Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: BD+CD=BC
nên CD=14-8=6
Xét ΔBAC có
AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
\(\Leftrightarrow\dfrac{AB}{AC}=\dfrac{4}{3}\)
hay \(AB=\dfrac{4}{3}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2\cdot\dfrac{25}{9}=14^2=196\)
\(\Leftrightarrow AC^2=70.56\)
\(\Leftrightarrow AC=8.4\left(cm\right)\)
\(\Leftrightarrow AB=\dfrac{4}{3}\cdot AC=\dfrac{4}{3}\cdot8.4=11.2\left(cm\right)\)
Câu hỏi của Trần Dần - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo nhé!
bài 9
tam giác ABC vuông tại A có
* BC2=AB2+AC2
BC2=152+202=625
BC=25cm
* AH.BC=AB.AC
AH.25=15.20
AH.25=300
AH=12cm
tam giác ABH vuông tại H có
BH2=AB2-AH2
BH2=152-122=81
BH=9cm
tam giác ABC vuông tại A có
*AB2=BH.BC
225=9.BC
BC=25cm
CH=BC-BH=25-9=16cm
*AC2=BC2-AB2
AC2=252-152=400
AC=20cm
Ta có DB/AB = DC/AC =>3/AB=4/AC => 4AB=3AC => AB=3/4 AC
ta lại có BC=3+4=7 cm
tam giác ABC vuông tại A, theo định lí pitago, ta có BC^2 = AB^2 + AC^2
=> 49= 9/16AC^2 + AC^2 => AC=28/5 => AB=21/5
2/AB/AC=3/4 nên AB=3AC/4(1)
Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC
Để tính AB và AC, ta sẽ sử dụng định lý Pythagoras trong tam giác vuông.
Với ∆ABC vuông tại A và BD là phân giác của góc B, ta có:
BD/BC = 3/4
Vì BD/BC = 3/4, ta có thể xác định giá trị của BD và CD:
BD = (3/4) * BC = (3/4) * 20cm = 15cm CD = BC - BD = 20cm - 15cm = 5cm
Với AB > AC, ta có thể gọi AB = x và AC = y (với x > y).
Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:
AB^2 = AC^2 + BC^2
x^2 = y^2 + 20^2
Ta cũng biết rằng BD là phân giác của góc B, do đó:
AD = DC = 5cm
Áp dụng định lý Pythagoras trong tam giác vuông ABD, ta có:
AB^2 = AD^2 + BD^2
x^2 = 5^2 + 15^2
x^2 = 25 + 225
x^2 = 250
Từ phương trình trên, ta có x = √250 = 5√10
Do đó, AB = 5√10 cm.
Tiếp theo, ta sẽ tính giá trị của y (AC).
Áp dụng định lý Pythagoras trong tam giác vuông ACD, ta có:
AC^2 = AD^2 + CD^2
y^2 = 5^2 + 5^2
y^2 = 25 + 25
y^2 = 50
Từ phương trình trên, ta có y = √50 = 5√2
Do đó, AC = 5√2 cm.
Tóm lại, AB = 5√10 cm và AC = 5√2 cm.