Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2019}=2^{x+2023}-8$
$2^x(1+2+2^2+...+2^{2019})=2^{x+2023}-8$
Xét:
$A=1+2+2^2+...+2^{2019}$
$2A=2+2^2+2^3+...+2^{2020}$
$\Rightarrow A=2A-A=2^{2020}-1$
Khi đó:
$2^x.A=2^{x+2023}-8$
$2^x(2^{2020}-1)=2^{x+2023}-2^3$
$2^x(2^{2023}-2^{2020}+1)-2^3=0$
$2^x(2^{2020}.7+1)=2^3$
$x$ ra số sẽ khá xấu. Bạn coi lại.
1)\(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{11}{70}\)
\(\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{x\left(x+3\right)}\right):3=\dfrac{11}{70}\)
\(\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+.....+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{11}{70}\cdot3\)
\(\dfrac{1}{2}-\dfrac{1}{x+3}=\dfrac{33}{70}\)
\(\dfrac{1}{x+3}=\dfrac{1}{2}-\dfrac{33}{70}\)
\(\dfrac{1}{x+3}=\dfrac{2}{70}\)
\(\dfrac{1}{x+3}=\dfrac{1}{35}\)
\(x+3=35\\ x=35-3\\ x=32\)
2) Số góc đc tạo thành từ 2023 tia chung gốc là:\(\dfrac{2023\cdot2022}{2}=2045253\) (góc)
Bài 1 thì bạn Ánh làm đúng rồi
Bài 2 thì giải chi tiết như này em nhé:
Cứ 1 tia tạo với 2023 - 1 tia còn lại là 2023 - 1 góc
Với 2023 tia thì tạo được số góc là: (2023 - 1)\(\times\) 2023 góc
Theo cách tính trên thì mỗi góc đã được tính hai lần
Vậy số góc tạo được là: (2023-1)\(\times\) 2023: 2 = 2045253 (góc)
Kết luận: ...
Đặt A= 2x+2x+1+......+2x+2018
⇒ 2A=2x+1+......+2x+2018+2x+2019
⇒ A= 2A-A = 2x+2019- 2x*Em trừ mấy cái giống nhau đi á
Theo bài ra:
⇒ 2x+2019- 2x=22023-16=22023-24
⇒x=4
*like hộ phát