K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2022

\(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)

\(\Leftrightarrow4x^2+8xy+4y^2=4x^2y^2-4xy+1-1\)

\(\Leftrightarrow\left(2x+2y\right)^2=\left(2xy-1\right)^2-1\)

\(\Leftrightarrow\left(2xy-1+2x+2y\right)\left(2xy-1-2x-2y\right)=1\)

31 tháng 10 2022

\(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy=-1\end{matrix}\right.\)

(Nếu một số chính phương mà bằng tích của 2 số liên tiếp thì một trong 2 số liên tiếp đó bằng 0)

Nếu \(x=0\) \(\Rightarrow\left(0+y\right)^2=0.y\left(0.y+1\right)\Leftrightarrow y=0\)

Do x và y có vai trò bình đẳng nên khi \(y=0\Rightarrow x=0\)

Nếu \(xy=-1\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\end{matrix}\right.\) (TMĐK)

Vậy pt đã cho có các nghiệm nguyên: \(\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\)

14 tháng 9 2017

<=>x^2+y^2-x-y-xy=0 
<=>2x^2+2y^2-2x-2y-2xy=0 
<=>(x-y)^2+(x-1)^2+(y-1)^2=2 
mà 2=0+1+1=1+0+1=1+1+0 
(phần này tách số 2 ra thành tổng 3 số chính phương) 
Xét trường hợp 1: 
(x-y)^2=0 
(x-1)^2=1 
(y-1)^2=1 
Giải ra ta được x=2, y=2 
Tương tự xét các trường hợp còn lại. 
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1) 
Thân^^

14 tháng 9 2017

x2 - xy + y2 = x - y

<=> x2 - xy + y2 - x + y = 0

<=> x ( x - y) + y2 - ( x - y) = 0

<=> (x-1)(x-y)y2 =0

30 tháng 7 2021

      \(x+y+xy=x^2+y^2\)

⇔  \(2xy+2x+2y=2x^2+2y^2\)

\(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)           

⇔  \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)

⇔ 

⇔ 

Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).

24 tháng 6 2021

Cảm ơn e gái nha =))

26 tháng 1 2022

PT <=> \(\left(y+2\right)x^2=y^2-1\)

- Nếu y = -2 <=> \(\left(-2\right)^2-1=0\) (vô lí)

=> \(y\ne-2\)

PT <=> \(x^2=\dfrac{y^2-1}{y+2}\)

Có \(x\in Z\Rightarrow x^2\in Z\)

=> \(\dfrac{y^2-1}{y+2}\in Z\)

=> \(y^2-1⋮y+2\)

=> \(y\left(y+2\right)-2\left(y+2\right)+3⋮y+2\)

=> \(3⋮y+2\)

Ta có bảng

y+213-1-3
y-11-3-5
x0 (Tm)0 (Tm)\(\varnothing\)\(\varnothing\)

KL: Vậy phương trình có tập nghiệm\(\left(x;y\right)=\left\{\left(0;1\right);\left(0;-1\right)\right\}\)

 

15 tháng 1 2022

Ta có x+ x+ 1 = y2

Lại có x+ 2x+ 1 ≥ x+ x+ 1 hay (x2 + 1)2 ≥ x+ x+ 1

=> (x2 + 1)2 ≥ y(1)

Lại có x+ x+ 1 > x4 => y2 > x4 (2)

Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2

<=> y2 = (x2 + 1)2 = x+ 2x+ 1

Mà x+ x+ 1 = y=> x+ 2x+ 1 = x+ x+ 1

<=> x2 = 0 <=> x = 0

Thay vào, ta có 1 = y<=> y ∈ {-1,1}

Vậy ...

 

17 tháng 7 2016

nhan 2 ve voi x+y roi suot hien hang dang thuc