Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
<=>x^2+y^2-x-y-xy=0
<=>2x^2+2y^2-2x-2y-2xy=0
<=>(x-y)^2+(x-1)^2+(y-1)^2=2
mà 2=0+1+1=1+0+1=1+1+0
(phần này tách số 2 ra thành tổng 3 số chính phương)
Xét trường hợp 1:
(x-y)^2=0
(x-1)^2=1
(y-1)^2=1
Giải ra ta được x=2, y=2
Tương tự xét các trường hợp còn lại.
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1)
x2 - xy + y2 = x - y
<=> x2 - xy + y2 - x + y = 0
<=> x ( x - y) + y2 - ( x - y) = 0
<=> (x-1)(x-y)y2 =0
\(x+y+xy=x^2+y^2\)
⇔ \(2xy+2x+2y=2x^2+2y^2\)
⇔ \(\left(x^2+y^2-2xy\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=2\)
⇔ \(\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2=2\)
⇔
⇔
Các cặp số nguyên (x, y) thỏa mãn phương trình là : (0; 0); (2; 2); (0; 1); (2; 1); (1; 0);(1;2).
PT <=> \(\left(y+2\right)x^2=y^2-1\)
- Nếu y = -2 <=> \(\left(-2\right)^2-1=0\) (vô lí)
=> \(y\ne-2\)
PT <=> \(x^2=\dfrac{y^2-1}{y+2}\)
Có \(x\in Z\Rightarrow x^2\in Z\)
=> \(\dfrac{y^2-1}{y+2}\in Z\)
=> \(y^2-1⋮y+2\)
=> \(y\left(y+2\right)-2\left(y+2\right)+3⋮y+2\)
=> \(3⋮y+2\)
Ta có bảng
y+2 | 1 | 3 | -1 | -3 |
y | -1 | 1 | -3 | -5 |
x | 0 (Tm) | 0 (Tm) | \(\varnothing\) | \(\varnothing\) |
KL: Vậy phương trình có tập nghiệm\(\left(x;y\right)=\left\{\left(0;1\right);\left(0;-1\right)\right\}\)
Ta có x4 + x2 + 1 = y2
Lại có x4 + 2x2 + 1 ≥ x4 + x2 + 1 hay (x2 + 1)2 ≥ x4 + x2 + 1
=> (x2 + 1)2 ≥ y2 (1)
Lại có x4 + x2 + 1 > x4 => y2 > x4 (2)
Từ (1) và (2), ta có x4 < y2 ≤ (x2 + 1)2
<=> y2 = (x2 + 1)2 = x4 + 2x2 + 1
Mà x4 + x2 + 1 = y2 => x4 + 2x2 + 1 = x4 + x2 + 1
<=> x2 = 0 <=> x = 0
Thay vào, ta có 1 = y2 <=> y ∈ {-1,1}
Vậy ...
\(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow4x^2+4xy+4y^2=4x^2y^2\)
\(\Leftrightarrow4x^2+8xy+4y^2=4x^2y^2-4xy+1-1\)
\(\Leftrightarrow\left(2x+2y\right)^2=\left(2xy-1\right)^2-1\)
\(\Leftrightarrow\left(2xy-1+2x+2y\right)\left(2xy-1-2x-2y\right)=1\)
\(x^2+xy+y^2=x^2y^2\)
\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)
\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=0\\xy+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\y=0\\xy=-1\end{matrix}\right.\)
(Nếu một số chính phương mà bằng tích của 2 số liên tiếp thì một trong 2 số liên tiếp đó bằng 0)
Nếu \(x=0\) \(\Rightarrow\left(0+y\right)^2=0.y\left(0.y+1\right)\Leftrightarrow y=0\)
Do x và y có vai trò bình đẳng nên khi \(y=0\Rightarrow x=0\)
Nếu \(xy=-1\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\end{matrix}\right.\) (TMĐK)
Vậy pt đã cho có các nghiệm nguyên: \(\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\)