Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{2.6.10+4.12.20+...+20.60.100}{1.2.3+2.4.6+...+10.20.30}=\frac{2.6.10.1^3+2.6.10.2^3+...+2.6.10.10^3}{1.2.3.1^3+1.2.3.2^3+...+1.2.3.10^3}\)
\(=\frac{2.6.10.\left(1^3+2^3+...+10^3\right)}{1.2.3.\left(1^3+2^3+...+10^3\right)}=\frac{2.6.10}{1.2.3}=20\)
vậy M=20
a) Đặt \(A=1+2+2^2+2^3+...+2^{100}\)
\(2A=2+2^2+2^3+...+2^{101}\)
\(2A-A=\left(2+2^2+2^3+...+2^{101}\right)-\left(1+2+2^2+...+2^{100}\right)\)
\(A=2^{101}-1< 2^{101}\)
\(3\times24^{10}\)
\(=3\times\left(2^3\times3\right)^{10}\)
\(=3\times3^{10}\times\left(2^3\right)^{10}\)
\(=3^{11}\times2^{30}\)
\(=3^{11}\times\left(2^2\right)^{15}\)
\(=3^{11}\times4^{15}\)
Vì \(3^{11}\)<\(4^{15}\left(3;4;11;15\inℕ\right)\)
Nên \(3^{11}\times4^{15}\)< \(4^{15}\times4^{15}=4^{30}\)
Do đó : \(3\times24^{10}\)< \(4^{30}\)
Vậy \(2^{30}+3^{30}+4^{30}\)> \(3\times24^{10}\)
\(10-\left[30-\left(3+2\right)^2\right]=10-30+5^2=-20+25=5.\)
\(10-\left[30\left(3+2\right)^2\right]\)
\(10-\left[30\cdot5^2\right]\)
\(10-750\)
\(=-740\)
10-(30(3+2)2]
= 10- [ 30 ( 9+4) ]
= 10 - ( 30 x 13 )
= 10- 390
= -740