Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M\left(x\right)=3x^4-2x^3+5x^2-4x+1\)
\(N\left(x\right)=-3x^4+2x^3-5x^2+7x+5\)
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)+\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x+6\)
\(Q\left(x\right)=M\left(x\right)-N\left(x\right)\)
\(=\left(3x^4-2x^3+5x^2-4x+1\right)-\left(-3x^4+2x^3-5x^2+7x+5\right)\)
\(=3x^4-2x^3+5x^2-4x+1+3x^4-2x^3+5x^2-7x-5\)
\(=6x^4-4x^3+10x^2-11x-4\)
a: \(P\left(x\right)=5x^5-4x^4-2x^3+4x^2+3x+6\)
Bậc là 5
\(Q\left(x\right)=-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
Bậc là 5
b: H(x)=P(x)+Q(x)
\(=5x^5-4x^4-2x^3+4x^2+3x+6-5x^5+4x^4+2x^3-4x^2+7x+\dfrac{1}{4}\)
=10x+6,25
c: Để H(x)=0 thì 10x+6,25=0
hay x=-0,625
a: \(P\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}\)
\(Q\left(x\right)=4x^4+2x^3-5x^2-6x+\dfrac{3}{2}\)
b: \(A\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}+4x^4+2x^3-5x^2-6x+\dfrac{3}{2}=-x^4+2x^3-3x^2-14x+2\)
\(B\left(x\right)=-5x^4+2x^2-8x+\dfrac{1}{2}-4x^4-2x^3+5x^2+6x-\dfrac{3}{2}=-9x^4-2x^3+7x^2-2x-1\)
a, \(A\left(x\right)+4x^3-x=-5x^2-2x^3+5+3x^2+2x\\ \Leftrightarrow A\left(x\right)=-5x^2-2x^3+5+3x^2+2x-4x^3+x=\left(-2x^3-4x^3\right)+\left(-5x^2+3x^2\right)+\left(2x+x\right)+5\\ =-6x^3-2x^2+3x+5\)
b, \(B\left(x\right)=A\left(x\right):\left(x-1\right)=\left(-6x^3-2x^2+3x+5\right):\left(x-1\right)=-6x^2-8x-5\)
Thay \(x=-1\) vào \(B\left(x\right)\)
\(\Rightarrow-6.\left(-1\right)^2-8\left(-1\right)-5=-3\ne0\)
\(\Rightarrow x=-1\) không là nghiệm của B(x)
\(a.A(x)=5x^4-5+6x^3+x^4-5x-12\)
\(=(5x^4+x^4)+6x^3-5x-5-12\)
\(=6x^4+6x^3-5x-17\)
\(B(x)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)
\(=(8x^4-2x^4)+(2x^3+4x^3)-2x^2-5x\)
\(=6x^4+6x^3-2x^2-5x\)
a, Ta có \(A\left(x\right)=5x^4-5+6x^3+x^4-5x-12\)
\(=6x^4-17+6x^3-5x\)
\(B\left(x\right)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)
\(=6x^4-5x+6x^3-2x^2\)
Sắp xếp : \(A\left(x\right)=6x^4+6x^3-5x-17\)
\(B\left(x\right)=6x^4+6x^3-2x^2-5x\)
b, Ta có : \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)(thề, đề sai, cho trừ khác ra bn nhé nhưng cx tôn trọng đề vậy =))
\(\Leftrightarrow C\left(x\right)=6x^4+6x^3-5x-17+6x^4+6x^3-2x^2-5x\)
\(\Leftrightarrow C\left(x\right)=12x^4+12x^3-10x-17\)
=> vô nghiệm =))
bài 3:
a) f(x)= x2+2x4-2x3+x2+5x4+4x3-x+5
= (2x4+5x4)+(4x3-2x3)+(x2+x2)-x+5
= 7x4+2x3+2x2-x+5
g(x)= -2x2+8x4+x-x4-3x3+3x2+5+4x3
=(8x4-x4)+(4x3-3x3)+(3x2-2x2)+x+5
= 7x4+x3+x2+x+5
b) h(x)=f(x)-g(x)
=(7x4+2x3+2x2-x+5)-(7x4+x3+x2+x+5)
=7x4+2x3+2x2-x+5-7x4-x3-x2-x-5
=(7x4-7x4)+(2x3-x3)+(2x2-x2)-(x+x)+(5-5)
=x3+x2-2x
Bài 4:
a) f(x)=5x4+x3-x+11+x4-5x3
=(5x4+x4)+(x3-5x3)-x+11
=6x4-4x3-x+11
g(x)=2x3+3x4+9-4x3+2x4-x
=(3x4+2x4)+(2x3-4x3)-x+9
=5x4-2x3-x+9
b) h(x)=f(x)-g(x)
=(6x4-4x3-x+11)-(5x4-2x3-x+9)
=6x4-4x3-x+11-5x4-2x3-x+9
=(6x4-5x4)-(4x3+2x3)-(x+x)+(11+9)
= x4-6x3-2x+20
c) Với x = -2
Ta có: h(-2)=(-2)4-6.(-2)3-2.(-2)+20=88\(\ne\)0
Vậy x = -2 không phải là nghiệm của đa thức h(x)
đúng thì tặng 1 tick cho mk nk các pn!!!
a)\(A\left(x\right)=2x^4-4x^3-x^2+5x+1\)
\(B\left(x\right)=-2x^4+4x^3+x^2-7x+1\)
\(C\left(x\right)=2x^4-4x^3-x^2+5x+1-2x^4+4x^3+x^2-7x+1\)
\(C\left(x\right)=-2x+2\)
\(D\left(x\right)=2x^4-4x^3-x^2+5x+1+2x^4-4x^3-x^2+7x-1\)
\(D\left(x\right)=4x^4-8x^3-2x^2+12x\)
b)cho C(x) = 0
\(=>-2x+2=0\Rightarrow-2x=-2\Rightarrow x=1\)
a) A(x)= 2x^4--4x^3--x^2+5x+1
B(x)= 2x^4+4x^3+x^2--7x+1
A(x)= 2x^4--4x^3--x^2+5x+1
B(x)= 2x^4+4x^3+x^2--7x+1 C(x)= 4x^4+0+0--2x+2A(x)= 2x^4--4x^3--x^2+5x+1
B(x)= 2x^4+4x^3+x^2--7x+1 D(x)=0--8x^3--2^2+12x+0