Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt A = |x-2015|+|2016-x| +|x-2017|
=> A = |x-2015|+|x-2016| +|2017-x|
Ta có |x-2015| \(\ge\)x - 2015 (với mọi x)
|x-2016| \(\ge\)0 (với mọi x)
|2017-x| \(\ge\) 2017 - x (với mọi x)
=> |x-2015|+|x-2016| +|2017-x| \(\ge\)(x - 2015) + 0 + (2017 - x) (với mọi x)
=> A \(\ge\)2 (với mọi x)
=> A đạt GTNN là 2 khi
\(\hept{\begin{cases}\text{|x-2015|\ge0}\\\text{|x-2016|=0}\\\text{|2017-x|\ge0}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2015\ge0\\x-2016=0\\2017-x\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\Rightarrow x=2016}\)
Vậy GTNN của A là 2 tại x = 2016
Ta có:
\(A=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|\)
\(=\left|x-2015\right|+\left|x-2016\right|+\left|2017-x\right|\)
\(\ge x-2015+0+2017-x=2\)
Dấu = khi \(\begin{cases}x-2015\ge0\\x-2016=0\\x-2017\le0\end{cases}\)\(\Rightarrow\begin{cases}x\ge2015\\x=2016\\x\le2017\end{cases}\)\(\Rightarrow x=2016\)
Vậy MinA=2 khi x=2016
\(|x-2015|+|x-2016|+|x-2017|< =>\left|x-2015\right|+\left|2017-x\right|+\left|x-2016\right|\)
=>\(\left|x-2105\right|+\left|2017-x\right|+\left|x-2016\right|\ge\left|x-2015+2017-x\right|+0=2+0=2\)
dấu '=' xảy ra <=>\(\left\{{}\begin{matrix}x=2016\\2015\le x\le2017\end{matrix}\right.\)<=>x=2016
vậy giá trị nhỏ nhất của P=2 khi x=2016
P = |x - 2015| + |x - 2016| + |x - 2017|
<=> P = |x - 2015| + |2017 - x| + |x - 2016|
Áp dụng BĐT |a| + | b| lớn hơn hoặc bằng |a + b| có :
|x - 2015| + |2017-x| + |x - 2016| lớn hơn hoặc bằng |x - 2015 + 2017 - x| + |x - 2016| = 2 + |x + 2016|
Dấu "=" xảy ra khi
(x - 2015) (2017 - x) lớn hơn hoặc bằng 0
và |x - 2016| = 0 => x = 2016
Có : x - 2015 lớn hơn hoặc bằng 0 và 2017 - x lớn hơn hoặc bằng 0
=> 2015 nhỏ hơn hoặc bằng x nhỏ hơn hoặc bằng 2017
-> x = 2016 (tm)
Vậy GTLN của P = 2 <=> x = 2016
\(A=\left|x-2015\right|+\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)
\(=\left(\left|x-2015\right|+\left|2018-x\right|\right)+\left(\left|x-2016\right|+\left|2017-x\right|\right)\)
\(\ge\left|x-2015+2018-x\right|+\left|x-2016+2017-x\right|\)
\(=4\)
Dấu \(=\)khi \(2016\le x\le2017\).
Bmin =3
Bmin=0