[THÔNG BÁO] Các khoá học lớp 4, lớp 8 và lớp 11 chính thức ra mắt trên OLM.VN từ ngày 15.6.2023!
👉 Nội dung bài giảng và các bài tập, đề kiểm tra bám sát các yêu cầu cần đạt mà Bộ Giáo dục và Đào tạo ban hành cho từng môn, lớp.
🎯 Phương pháp giảng dạy hiện đại, tích cực hoá các hoạt động học tập, tăng cường khả năng vận dụng kiến thức vào thực tiễn cho học sinh.
✅ Hệ thống bài giảng, bài tập trực quan, hấp dẫn, kết hợp sát thực tế, đáp ứng nhu cầu của mọi đối tượng học sinh.
✍ Đội ngũ giáo viên kinh nghiệm, tận tâm, sẵn sàng trao đổi các vướng mắc của học sinh trong mỗi bài giảng và đưa ra các định hướng hỗ trợ để các em tự học một cách hiệu quả nhất.
Thông tin chi tiết: https://olm.vn/bai-viet/olm-bo-sung-cac-khoa-hoc-theo-sgk-moi-lop-4-8-11-645403243
Tất cả các tài khoản VIP đều được tham dự các khóa học này.
Liên hệ với số điện thoại/Zalo sau để được tư vấn, hỗ trợ: 0898 987 672 (cô Hòa).
Trân trọng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$3x^2+x=4y^2+y$
$\Leftrightarrow 4(y^2-x^2)+(y-x)=-x^2$
$\Leftrightarrow (y-x)[4(x+y)+1]=x^2$
$\Leftrightarrow (x-y)[4(x+y)+1]=x^2$
Gọi $d=(x-y, 4x+4y+1)$
Khi đó: $x-y\vdots d(1); 4x+4y+1\vdots d(2)$. Mà $x^2=(x-y)(4x+4y+1)$ nên $x^2\vdots d^2$
$\Rightarrow x\vdots d(3)$.
Từ $(1); (3)\Rightarrow y\vdots d$
Từ $x,y\vdots d$ và $4x+4y+1\vdots d$ suy ra $1\vdots d$
$\Rightarrow d=1$
Vậy $x-y, 4x+4y+1$ nguyên tố cùng nhau. Mà tích của chúng là scp $(x^2)$ nên bản thân mỗi số trên cũng là scp.
Đặt $4x+4y+1=t^2$ với $t$ tự nhiên.
Khi đó: $A=2xy+4(x+y)^3+x^2+y^2=(x+y)^2+4(x+y)^3=(x+y)^2[1+4(x+y)]$
$=(x+y)^2t^2=[t(x+y)]^2$ là scp
Ta có đpcm.
?????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????
ta có:
\(\Leftrightarrow x^2+5y^2-4x-4xy+6y+5=0\) \(\Leftrightarrow x^2+4y^2+4-4xy-4x+8y+y^2-2y+1=0\) \(\Leftrightarrow\left(x-2y-2\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow x-2y-2\ge0\) hoặc \(\Leftrightarrow y-1\ge0\)
\(\Leftrightarrow x-2y-2=0\) hoặc \(\Leftrightarrow y-1=0\)
\(\Leftrightarrow x=4\) hoặc \(y=1\)
đây bạn nhé.
Đề câu a là \(\dfrac{-1}{4+x}-2\) phải không bạn. Trong trường hợp này x=-4 biểu thức không xác định nên không thể với mọi x được.
a + b, A=\(\dfrac{x-3\sqrt{x}+2}{x-4\sqrt{x}+3}\) = \(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}\)=\(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\)
ĐKXĐ: \(\sqrt{x}-3\)\(\Leftrightarrow\sqrt{x}\)\(\ne\)3\(\Leftrightarrow\) x\(\ne\)9
c, \(\dfrac{\sqrt{x}-2}{\sqrt{x}-3}=\dfrac{\sqrt{x}-3+1}{\sqrt{x}-3}=1+\dfrac{1}{\sqrt{x}-3}\Rightarrow\sqrt{x}-3\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\sqrt{x}-3\) | 1 | -1 |
x | 16 | 4 |
\(\sqrt{1-\sqrt{x^4-x^2}}=x-1\)
\(\Leftrightarrow1-\sqrt{x^4-x^2}=\left(x-1\right)^2\)
\(\Leftrightarrow-\sqrt{x^4-x^2}=x^2-2x+1-1\)
\(\Leftrightarrow x^4-x^2=\left(x^2-2x\right)^2\)
\(\Leftrightarrow x^4-x^2=x^4-4x^3+4x^2\)
\(\Leftrightarrow4x^3-5x^2=0\)
\(\Leftrightarrow x^2\left(4x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\4x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{5}{4}\end{matrix}\right.\)
Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là a và b ( 0< a,b< 210; m)
Theo đề bài ta có hệ pt:
2a + 2b = 110
4a + 8b = 316
⇒ a = 31 (m)
b = 24 (m)
- Độ dài ban đầu:
+ Nửa chu vi HCN là: \(\dfrac{110}{2}=55\left(m\right)\)
+ Gọi chiều dài HCN là: \(a\left(m\right)\left(đk:0< a< 55\right)\)
+ Chiều rộng HCN là: \(55-a\left(m\right)\)
- Độ dài sau khi thay đổi:
+ Nửa chu vi HCN là: \(\dfrac{316}{2}=158\left(m\right)\)
+ Chiều dài HCN là: \(2a\left(m\right)\)
+ Chiều rộng HCN là: \(4\left(55-a\right)\left(m\right)\)
Theo bài ra, ta có phương trình:
\(2a+4\left(55-a\right)=158\\ \Leftrightarrow2a+220-4a=158\\ \Leftrightarrow2a-4a=158-220\\ \Leftrightarrow-2a=-62\\ \Leftrightarrow a=31\left(m\right)\left(TM\right)\)
Vậy chiều dài là 31m, chiều rộng là 55 - 31 = 22m