K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2023

Dáp án của mình là f(x)= \sqrt{-3}  −3

7 tháng 7 2023

Ta có:
\(\dfrac{998}{555}=1+\dfrac{443}{555}\)
\(\dfrac{999}{556}=1+\dfrac{443}{556}\)
So sánh phân số \(\dfrac{443}{555}\) và \(\dfrac{443}{556}\)
Vì \(555< 556\) nên \(\dfrac{1}{555}>\dfrac{1}{556}\)
\(\Rightarrow1+\dfrac{443}{555}>1+\dfrac{443}{556}\)
Vậy \(\dfrac{998}{555}>\dfrac{999}{556}\)

7 tháng 7 2023

 Ta có một công thức tổng quát là nếu có phân số \(\dfrac{a}{b}>1\) và \(a,b>0\)thì \(\dfrac{a+1}{b+1}< \dfrac{a}{b}\). Thật vậy, điều này tương đương với \(b\left(a+1\right)< a\left(b+1\right)\Leftrightarrow b< a\), luôn đúng vì \(\dfrac{a}{b}>1\).

 Như vậy, trở lại bài toán, ta thấy \(\dfrac{998}{555}>1\) nên \(\dfrac{999}{556}< \dfrac{998}{555}\).

7 tháng 7 2023

giải giúp mink với ❤

`@` `\text {Ans}`

`\downarrow`

`1,`

`A = 2/5 + (-4/3) + (-1/2)`

`= -14/15 + (-1/2)`

`= -43/30`

Vậy, `A = -43/30`

`=> C.`

`2,`

`a.`

`x + 1/3 = 2/5 - (-1/3)`

`=> x + 1/3 = 2/5 + 1/3`

`=> x + 1/3 = 11/15`

`=> x = 11/15 - 1/3`

`=> x = 2/5`

Vậy, `x= 2/5`

`b.`

`3/7 - x = 1/4 - (-3/5)`

`=> x = 3/7 - (1/4 + 3/5)`

`=> x = 3/7 - 17/20`

`=> x = -59/140`

Vậy, `x = -59/140`

`3,`

` B = (-5/9)*3/11 + (-13/18)*3/11`

`= 3/11*(-5/9 - 13/18)`

`= 3/11*(-10/18 - 13/18)`

`= 3/11* (-23/18)`

`= -23/66`

Vậy, `B = -23/66`

`=> C.`

`@` `\text {Kaizuu lv uuu}`

6 tháng 7 2023

a) 4x⁴.(xⁿ⁻¹ + x - 5)

= 4xⁿ⁺³ + 4x⁵ - 20x⁴

b) 2xⁿ⁻².(14xⁿ⁺¹ - 10x²)

= 28x²ⁿ⁻¹ - 20xⁿ

c) 2ⁿ⁻¹.(xⁿ⁻¹ + 2)

= (2x)ⁿ⁻¹ + 2ⁿ

6 tháng 7 2023

C = 6/2.5 + 6/5.8 + 6/8.11 +...+ 6/29.32
C = 2.(3/2.5 + 3/5.8 + 3/8.11 + ... + 3/29.32)
C = 2.(1/2 - 1/5 + 1/5 - 1/8 + 1/8 - 1/11 + ... + 1/29 - 1/32)
C = 2.(1/2 - 1/32)
C = 2.15/32
C = 15/16

6 tháng 7 2023

Con cặc

6 tháng 7 2023

\(E=1^2+2^2+3^2+....+59^2\)

\(E=1+2\left(1+1\right)+3\left(2+1\right)+...+59\left(58+1\right)\)

\(E=1+1\times2+2+2\times3+3+....+58\times59+59\)

\(E=\left(1+2+3+...+59\right)+\left(1\times2+2\times3+....+58\times59\right)\)

Ta đặt :

\(A=1+2+3+...+59\)

Số số hạng là \(\left(59-1\right)\div1+1=59\) số hạng

Tổng là \(\left(59+1\right)\times59\div2=1770\) 

=> \(A=1770\) 

Ta đặt

   \(B=1\times2+2\times3+...+58\times59\)

\(3B=1\times2\times3+2\times3\times3+....+58\times59\times3\)

\(3B=1\times2\times3+2\times3\times\left(4-1\right)+...+58\times59\times\left(57-54\right)\)

\(3B=1\times2\times3+2\times3\times4-2\times3\times1+...+58\times59\times57-58\times59\times54\)

\(3B=58\times59\times57\)

\(B=58\times59\times19\)

\(B=65018\)

=> \(E=A+B\) 

=> \(E=1770+65018\) 

=> \(E=66788\)

 

6 tháng 7 2023

Trước hết ta sẽ chứng minh \(1^2+2^2+...+n^2=\dfrac{n\left(n+1\right)\left(2n+1\right)}{6}\) (*). Thật vậy, với \(n=1\) thì hiển nhiên \(1^2=\dfrac{1\left(1+1\right)\left(2.1+1\right)}{6}\). Giả sử (*) đúng đến \(n=k\), khi đó \(1^2+2^2+...+k^2=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}\). Ta cần chứng minh (*) đúng với \(n=k+1\). Ta có:

\(1^2+2^2+...+k^2+\left(k+1\right)^2\)

\(=\dfrac{k\left(k+1\right)\left(2k+1\right)}{6}+\left(k+1\right)^2\) 

\(=\dfrac{\left(k+1\right)\left(2k^2+k+6\left(k+1\right)\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(2k^2+7k+6\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left(k+2\right)\left(2k+3\right)}{6}\)

\(=\dfrac{\left(k+1\right)\left[\left(k+1\right)+1\right]\left[2\left(k+1\right)+1\right]}{6}\).

Vậy (*) đúng với \(n=k+1\). Ta có đpcm. Thay \(n=59\) thì ta có:

\(E=1^2+2^2+...+59^2=\dfrac{59\left(59+1\right)\left(2.59+1\right)}{6}=70210\)

6 tháng 7 2023

a/

\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=\)

\(=ab-ac-ab-bc+ac-bc=-2bc\)

b/

\(a\left(1-b\right)+a\left(a^2-1\right)=\)

\(=a-ab+a^3-a=a^3-ab=a\left(a^2-b\right)\)

c/

\(a\left(b-x\right)+x\left(a+b\right)=ab-ax+ax+bx=\)

\(=ab+bx=b\left(a+x\right)\)

6 tháng 7 2023

Ta đặt

  \(A=1\times3+3\times5+...+61\times63\)

\(6A=1\times3\times6+3\times5\times6+....+61\times63\times6\)

\(6A=1\times3\times6+3\times5\times\left(7-1\right)+...+61\times63\times\left(65-59\right)\)

\(6A=1\times3\times6+3\times5\times7-1\times3\times5+...+61\times63\times65-59\times61\times63\)

\(6A=1\times3\times6-1\times3\times5+61\times63\times65\)

\(6A=3+61\times63\times65\)

\(6A=3\times\left(1+61\times21\times65\right)\)

\(2A=83266\)

\(A=83266\div2=41633\)