K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)\)

\(=\left[a^2+\left(2a+3\right)\right]\left[a^2-\left(2a+3\right)\right]\)

\(=\left(a^2\right)^2-\left(2a+3\right)^2\)

\(=a^4-\left(2a+3\right)^2\)

b: \(\left(-a^2-2a+3\right)^2\)

\(=\left(a^2+2a-3\right)^2\)

\(=a^4+4a^2+9+4a^3-18a-6a^2\)

\(=a^4+4a^3-2a^2-18a+9\)

c: \(\left(x-y-z\right)^2\)

\(=x^2-2x\left(y+z\right)+\left(y+z\right)^2\)

\(=x^2-2xy-2xz+y^2+2yz+z^2\)

d: \(\left(x+y+z\right)\left(x-y-z\right)\)

\(=x^2-\left(y+z\right)^2\)

\(=x^2-y^2-2yz-z^2\)

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

29 tháng 6 2015

1)a)x2+10x+26+y2+2y

=(x2+10x+25)+(y2+2y+1)

=(x+5)2+(y+1)2

b)x2-2xy+2y2+2y+1

=(x2-2xy+y2)+(y2+2y+1)

=(x-y)2+(y+1)2

c)z2-6z+13+t2+4t

=(z2-6z+9)+(t2+4t+4)

=(z-3)2+(t+2)2

d)4x2+2z2-4xz-2z+1

=(4x2-4xz+z2)+(z2-2z+1)

=(2x-z)2+(z-1)2

2)a)(x-3)2-4=0

<=>(x-3-2)(x-3+2)=0

<=>(x-5)(x-1)=0

<=>x-5=0 hoặc x-1=0

<=>x=5 hoặc x=1

b)x2-2x=24

<=>x2-2x-24=0

<=>(x2-6x)+(4x-24)=0

<=>x(x-6)+4(x-6)=0

<=>(x-6)(x+4)=0

<=>x-6=0 hoặc x+4=0

<=>x=6 hoặc x=-4

29 tháng 6 2015

a) x^2 + 10x + 26 + y^2 + 2y

=x2+10x+25+y2+2y+1

=x2+2.x.5+52+y2+2.y.1+12

=(x+5)2+(y+1)2

b)x^2 - 2xy + 2y^2 + 2y +1

=x2-2xy+y2+y2+2y+1

=(x-y)2+(y+1)2

c)z^2 - 6z + 13 + t^2 + 4t

=z2-6z+9+t2+4z+4

=z2-2.z.3+32+t2+2.t.2+22

=(z-3)2+(t+2)2

d)4x^2 + 2z^2 - 4xz - 2z + 1

=4x2-4xz+z2+z2-2z+1

=(2x)2-2.2x.z+z2+z2-2z.1+12

=(2x-z)2+(z-1)2

7 tháng 7 2018

\(a.9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)

\(b.\left(2x+y\right)^2-1=\left(2x+y-1\right)\left(2x+y+1\right)\)

\(c.\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left[\left(x+y+z\right)+\left(x-y-z\right)\right]\left[\left(x+y+z\right)\right]-\left(x-y-z\right)\\ =2x.\left(2y+2z\right)\)

7 tháng 7 2018

a) \(9a^2-25b^4=\left(3a\right)^2-\left(5b^2\right)^2=\left(3a-5b^2\right)\left(3a+5b^2\right)\)

b) \(\left(2x+y\right)^2-1=\left(2x+y\right)^2-1^2=\left(2x+y+1\right)\left(2x+y-1\right)\)

c) \(\left(x+y+z\right)^2-\left(x-y-z\right)^2=\left(x+y+z+x-y-z\right)\left(x+y+z-x+y+z\right)\)

                                                              \(=2x\left(2y+2z\right)\)

11 tháng 7 2018

a) Ta có:

(x+y+z)(x-y-z) = x^2 -xy -xz +yx- y^2 -yz+zx -zy -z^2

=x^2 - y^2 - 2yz - z^2.

b) Ta có: (x-y+z)(x+y+z) = x^2 +xy+xz -yx-y^2 -yz +zx+zy +z^2

=x^2 +2xz- y^2 +z^2.

c) Ta có: -16 + (x-3)^2 = -16 + ( x^2-6x+9)

= -16 + x^2 - 6x + 9

= x^2 - 6x - 7.

11 tháng 7 2018

\(a,\left(x+y+z\right)\left(x-y-z\right)\)

\(=x\left(x-y-z\right)+y\left(x-y-z\right)+z\left(x-y-z\right)\)

\(=x^2-xy-xz+xy-y^2-yz+xz-yz-z^2\)

\(=x^2-y^2-2yz-z^2\)

\(b,\left(x-y+z\right)\left(x+y+z\right)\)

\(=x\left(x+y+z\right)-y\left(x+y+z\right)+z\left(x+y+z\right)\)

\(=x^2+xy+xz-xy-y^2-yz+xz+yz+z^2\)

\(=x^2+2xz-y^2+z^2\)

\(c,-16+\left(x-3\right)^2\)

\(=-16+x^2-6x+9\)

\(=x^2-6x-7\)

17 tháng 7 2017

a, \(\left(x-y+z\right)\left(x-y-z\right)\)

\(=\left(x-y\right)^2-z^2\)(hằng đẳng thức số 3)

b, Sửa đề:\(\left(\dfrac{1}{2}x+y-z\right)\left(\dfrac{1}{2}x+y+z\right)\)

\(=\left(\dfrac{1}{2}x+y\right)^2-z^2\)(hằng đẳng thức số 3)

Chúc bạn học tốt!!!

17 tháng 7 2017

Dưới dạng tổng mà