K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2021

\(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}\left(x\ge0,x\ne4\right)\)

\(A=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)

+ Nếu x ko là SCP

=> \(\sqrt{x}\notin Z\Rightarrow\frac{4}{\sqrt{x}-2}\notin Z\) (loại)

+ Nếu x là SCP

\(\Rightarrow\sqrt{x}-2\in Z\)

Để A nguyên thì \(\frac{4}{\sqrt{x}-2}\in Z\)

Hay \(\sqrt{x}-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

Bạn tự lm tiếp nha

24 tháng 6 2021

\(11:\)

\(\frac{-\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=-\sqrt{2}\left(B\right)\)

\(12:B\)

\(13:\sqrt{25x}-\sqrt{9x}=8\)

\(\sqrt{25}\sqrt{x}-\sqrt{9}\sqrt{x}=8\)

\(\sqrt{x}\left(5-3\right)=8\)

\(\sqrt{x}=4< =>x=16\left(C\right)\)

\(14:\frac{4}{\sqrt{5}-1}-\sqrt{5}\)

\(\frac{4-5+\sqrt{5}}{\sqrt{5}-1}\)

\(\frac{\sqrt{5}-1}{\sqrt{5}-1}=1\left(B\right)\)

\(15:\)

\(-\sqrt{a^2\frac{b}{a}}\)

\(-\sqrt{a.b}\left(C\right)\)

\(1:4\left(B\right)\)

\(16:\sqrt{12}-\sqrt{27}+\sqrt{3}\)

\(\sqrt{3}\left(\sqrt{4}-\sqrt{9}+1\right)\)

\(\sqrt{3}\left(2-3+1\right)=0\left(B\right)\)

\(17:\sqrt{18}+\frac{2}{\sqrt{2}}-3\sqrt{8}\)

\(\sqrt{2}\left(\sqrt{9}+1-3\sqrt{4}\right)\)

\(\sqrt{2}.2=2\sqrt{2}\left(D\right)\)

\(18:\sqrt{x^2}=\left|x\right|=13\)

\(x=\pm13\left(D\right)\)

\(19:\left|x-1\right|\left(C\right)\)

\(20:\sqrt{9-4\sqrt{5}}=\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(\left|\sqrt{5}-2\right|=\sqrt{5}-2\left(B\right)\)

hok tốt

chịu luôn

ko dc vì

tui hok lớp 4

24 tháng 6 2021

Do: Góc ABD = Góc ACE (= 90 - A)
=> Δ ABD ∼ Δ ACE (2 Δ vuông)
=> AD.AC = AE.AB (tỉ lệ đồng dạng)
<=> AM2 = AN2 (Hệ thức lượng trong Δ vuông)
<=> AM = AN
Hay Δ AMN cân tại A.=>....

     #HT#

24 tháng 6 2021

\(22-2\sqrt{x+5}+1=-x^2-9x\)

\(23-2\sqrt{x+5}=-x^2-9x\)

\(2\sqrt{x+5}=23+x^2+9x\)

\(4\left(x+5\right)=\left(23+x^2+9x\right)^2\)

\(4x+20=529+x^4+81x^2+46x^2+18x^3+261x\)

\(x^4+18x^3+81x^2+257x+509=0\)

bấm máy thì ra nha

\(b,P=\sqrt{12-4\sqrt{3}}\)

\(P=\sqrt{4\left(3-\sqrt{3}\right)}\)

\(c.\sqrt{\left(2\sqrt{3}\right)^2+4\sqrt{3}+1}-\sqrt{\left(2\sqrt{3}\right)^2-4\sqrt{3}+1}\)

\(\left|2\sqrt{3}+1\right|-\left|2\sqrt{3}-1\right|\)

\(2\sqrt{3}+1-2\sqrt{3}+1\)

\(=2\)

23 tháng 6 2021

\(1:x< 0\left(B\right)\)

\(2:\left(D\right)\)

\(3:x< 2021\left(C\right)\)

\(4:x\ge15\left(D\right)\)

\(5:\)để pt có nghĩa thì 2x-5>0

\(2x>5< =>x>\frac{5}{2}\)

chọn (C)

\(6:\frac{1}{2}\sqrt{20}-\sqrt{\left(2-\sqrt{5}\right)^2}\)

\(\frac{1}{2}\sqrt{20}-\sqrt{5}+2\)

\(\sqrt{5}-\sqrt{5}+2=2\)

chọn (B)

\(7:\frac{6xy^2}{x^2-y^2}\sqrt{\frac{\left(x-y\right)^2}{\left(3xy^2\right)^2}}\)

\(\frac{6xy^2}{x^2-y^2}\frac{x-y}{3xy^2}\)

\(\frac{2}{x+y}\)

chọn (B)

\(8:\left(1+\frac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(\frac{3+\sqrt{3}}{\sqrt{3}+1}-1\right)\)

\(\left(1+\frac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right)\left(\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-1\right)\)

\(\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)\)

\(\sqrt{3}^2-1^2=3-1=2\)

chọn (D)

\(9:M=\left|1-\sqrt{3}\right|+\left|1-\sqrt{3}\right|\)

\(M=\sqrt{3}-1+\sqrt{3}-1\)

\(M=2\sqrt{3}-2\)

chọn (A)

\(10:\sqrt{4+\sqrt{x^2-1}}=2\)

\(4+\sqrt{x^2-1}=2^2=4\)

\(\sqrt{x^2-1}=0\)

\(x^2-1=0< =>x=1\)

chọn (A)

24 tháng 6 2021

1 B 

2 D 

3 C 

4 D 

5 C 

6 B 

7 B 

8 D 

9 D 

10 B 

Đặt P=a2+b2+c2+ab+bc+ca

P=12(a+b+c)2+12(a2+b2+c2)

P≥12(a+b+c)2+16(a+b+c)2=6

Dấu "=" xảy ra khi 

23 tháng 6 2021

Ta có: \(\frac{a^2b^2+7}{\left(a+b\right)^2}=\frac{a^2b^2+1+6}{\left(a+b\right)^2}\ge\frac{2ab+2\left(a^2+b^2+c^2\right)}{\left(a+b\right)^2}\)( cô-si )

\(=\frac{\left(a+b\right)^2+a^2+b^2+2c^2}{\left(a+b\right)^2}=1+\frac{a^2+b^2+2c^2}{\left(a+b\right)^2}\)\(\ge1+\frac{a^2+b^2+2c^2}{2\left(a^2+b^2\right)}=1+\frac{1}{2}+\frac{c^2}{a^2+b^2}=\frac{3}{2}+\frac{c^2}{a^2+b^2}\)

CMTT \(\Rightarrow\)\(VT\ge\frac{9}{2}+\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\)

\(P=\frac{a^2}{b^2+c^2}+\frac{b^2}{a^2+c^2}+\frac{c^2}{a^2+b^2}\)

Đặt \(\hept{\begin{cases}b^2+c^2=x>0\\a^2+c^2=y>0\\a^2+b^2=z>0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a^2=\frac{y+z-x}{2}\\b^2=\frac{z+x-y}{2}\\c^2=\frac{x+y-z}{2}\end{cases}}\)

\(\Rightarrow P=\frac{y+z-x}{2x}+\frac{z+x-y}{2y}+\frac{x+y-z}{2z}\)

\(=\frac{y}{2x}+\frac{z}{2x}-\frac{1}{2}+\frac{z}{2y}+\frac{x}{2y}-\frac{1}{2}+\frac{x}{2z}+\frac{y}{2z}-\frac{1}{2}\)

\(=\left(\frac{y}{2x}+\frac{x}{2y}\right)+\left(\frac{z}{2x}+\frac{x}{2z}\right)+\left(\frac{z}{2y}+\frac{y}{2z}\right)-\frac{3}{2}\)

\(\ge1+1+1-\frac{3}{2}=\frac{3}{2}\)( bđt cô si )

\(\Rightarrow VT\ge\frac{9}{2}+\frac{3}{2}=6\) ( đpcm)

Dấu "=" xảy ra <=> a=b=c=1

 

13 tháng 7 2015

A B C H M

Tam giác ABC vuông tại A có AM kà trung tuyến => AM = BC/2 = \(\sqrt{41}\)/ 2

Ta có: \(\frac{AH}{AM}=\frac{40}{41}\) => AH = \(\frac{40}{41}.\frac{\sqrt{41}}{2}=\frac{20\sqrt{41}}{41}\)

Đặt AB = c; AC = b 

=> b.c = AH . BC = \(\frac{20\sqrt{41}}{41}.\sqrt{41}=20\)

Áp dụng ĐL Pi ta go có : b2 + c2 = BC2 = 41

=> (b + c)2 = b2 + c2 + 2bc = 41 + 2.20 = 81 => b + c = 9 (do b; c là độ dài đoạn thẳng nên b ; c > 0  ) => b = 9 - c

Thay vào b.c = 20 ta được (9 - c).c = 20 <=> c2 - 9c + 20  = 0

<=> (c-4)(c - 5) = 0 <=> c = 4 hoặc c = 5

c = 4 => b = 5

c= 5 => b = 4 

Vậy 2 cạnh góc vuông là 4 và 5

13 tháng 7 2015

Thế MR lazy hoặc ai cũng đc vì bài này cũng không khó