Dạng; Rút gọn biểu thức chauws căn bậc hai và tìm giá trị của biến để biểu thức nhận giá trị nguyên.
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}\)
\(B=\frac{x+2}{\sqrt{x}+2}\)
Tìm x để C= A(B-2) có giá trị nguyên
sau khi thay số và tính C= A(B-2)
mà x nguyên\(\rightarrow\)hoặc x là số chính phương hoặc x ko là số chính phương
th1. x là số chính phương\(\rightarrow\)\(\sqrt{x}\notin Z\rightarrow M\notin Z\left(koTM\right)\)
th2. x ko là số chính phương\(\rightarrow\)tiếp đến là lm kiểu j v:
ai hiểu cách lm này giải giúp tui vs
\(A=\frac{\sqrt{x}+2}{\sqrt{x}-2}\left(x\ge0,x\ne4\right)\)
\(A=\frac{\sqrt{x}-2+4}{\sqrt{x}-2}=1+\frac{4}{\sqrt{x}-2}\)
+ Nếu x ko là SCP
=> \(\sqrt{x}\notin Z\Rightarrow\frac{4}{\sqrt{x}-2}\notin Z\) (loại)
+ Nếu x là SCP
\(\Rightarrow\sqrt{x}-2\in Z\)
Để A nguyên thì \(\frac{4}{\sqrt{x}-2}\in Z\)
Hay \(\sqrt{x}-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Bạn tự lm tiếp nha