Cho hình vuông kích thước 8 x 8 gồm 64 ô vuông con. Người ta đặt 33 quân cờ vào các ô vuông con của bảng sao cho mỗi ô vuông con có không quá 1 quân cờ. Hai quân cờ được gọi là chiếu nhau nếu chúng nằm cùng một hàng hoặc nằm cùng một cột. Chứng minh rằng với mỗi cách đặt luôn tồn tại ít nhất 5 quân cờ đôi một không chiếu nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5\sqrt{34}+\left|6-\sqrt{34}\right|\)
\(6>\sqrt{34}\)
\(5\sqrt{34}+6-\sqrt{34}\)
\(4\sqrt{34}+6\)
a) Ta có:
\(\sqrt{\frac{289}{225}}=\sqrt{\frac{\sqrt{289}}{\sqrt{225}}}=\sqrt{\frac{17^2}{15^2}}=\frac{17}{15}\)
b) Ta có:
\(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\sqrt{\frac{\sqrt{64}}{\sqrt{25}}}=\sqrt{\frac{8^2}{5^2}}=\frac{8}{5}\)
c) Ta có:
\(\sqrt{\frac{0,25}{9}}=\sqrt{\frac{\sqrt{0,25}}{\sqrt{9}}}=\sqrt{\frac{0,5^2}{3^2}}=\frac{0,5}{3}=\frac{1}{6}\)
d) Ta có:
\(\sqrt{\frac{8,1}{1,6}}=\sqrt{\frac{81.0,1}{16.0,1}}=\sqrt{\frac{81}{16}}=\sqrt{\frac{\sqrt{81}}{\sqrt{16}}}=\sqrt{\frac{9^2}{4^2}}=\frac{9}{4}\)
a)Ta có: \(\sqrt{\frac{289}{225}}=\frac{\sqrt{289}}{\sqrt{225}}=\frac{17}{15}\)
b) Ta có: \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{\sqrt{64}}{\sqrt{25}}=\frac{8}{5}\)
c) Ta có: \(\sqrt{\frac{0,25}{9}}=\frac{\sqrt{0,25}}{\sqrt{9}}=\frac{0,5}{3}=\frac{1}{6}\)
d)Ta có : \(\sqrt{\frac{8,1}{1,6}}=\frac{\sqrt{8,1}}{\sqrt{1,6}}=\frac{\sqrt{8,1}.100}{\sqrt{1,6}.100}=\frac{\sqrt{81}}{\sqrt{16}}=\frac{9}{4}\)
a) đk: \(\hept{\begin{cases}x\ge1\\x\ne3\end{cases}}\)
\(P=\frac{x-3}{\sqrt{x-1}-\sqrt{2}}=\frac{\left(x-1\right)-2}{\sqrt{x-1}-\sqrt{2}}\)
\(=\frac{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\sqrt{x-1}-\sqrt{2}}=\sqrt{x-1}+\sqrt{2}\)
b) \(x=4\left(2-\sqrt{3}\right)\Rightarrow x-1=7-4\sqrt{3}=\left(2-\sqrt{3}\right)^2\)
\(\Rightarrow P=\sqrt{x-1}+\sqrt{2}=2-\sqrt{3}+\sqrt{2}\)
a) \(B=\left(\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}\right)\div\frac{\sqrt{x}+2}{x-4}\)
\(=\frac{\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{x-4}{\sqrt{x}+2}\)
\(=\frac{2\sqrt{x}+2}{x-4}\cdot\frac{x-4}{\sqrt{x}+2}=\frac{2\sqrt{x}+2}{\sqrt{x}+2}\)
b) \(C=A\left(B-2\right)=\frac{\sqrt{x}+2}{\sqrt{x}-2}\cdot\left(\frac{2\sqrt{x}+2}{\sqrt{x}+2}-2\right)\)
\(=\frac{\sqrt{x}+2}{\sqrt{x}-2}\cdot\frac{-2}{\sqrt{x}+2}=\frac{2}{2-\sqrt{x}}\)
Để C nguyên => \(2-\sqrt{x}\inƯ\left(2\right)\Rightarrow2-\sqrt{x}\in\left\{\pm1;\pm2\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;1;3;4\right\}\Leftrightarrow x\in\left\{0;1;9;16\right\}\)
Đề 1:
Câu 1: Chọn \(C.\)\(9cm\).
Câu 2: Chọn \(D.\)\(25cm\).
Câu 3: Chọn \(B.\)\(BA^2=BC.BH\).
Câu 4: Chọn \(C.\)\(\sqrt{HB.HC}\).
Đề 2:
Câu 1: Chọn \(B.\)\(8\).
Câu 2: Chọn \(B.\)\(6\).
Câu 3: Chọn \(C.\)\(8\).
Câu 4: Chọn \(A.\)\(\frac{1}{AI^2}=\frac{1}{AD^2}+\frac{1}{4HC^2}\).
Câu 1
\(AC^2=CH\cdot CB\)
\(6^2=4\cdot BC\)
\(36=4\cdot BC\)
\(BC=9\) ( Chọn C )