Bài 8: Cho hình thang ABCD ( AB // CD, AD > BC ) có đường chéo AC vuông góc cạnh bên CD; AC là tia phân giác góc BAD và góc D = 60 ĐỘ.
a, CM; ABCD là hình thang cân.
b, Tính độ dài cạnh AD; biết chu vi hình thang bằng 20 cm.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=8x^3-\frac{1}{125}\)
\(A=\left(2x\right)^3-\left(\frac{1}{5}\right)^3\)
\(A=\left(2x-\frac{1}{5}\right)\left(4x^2+\frac{2}{5}x+\frac{1}{25}\right)\)
\(B=\left(x^2\right)^3-\left(\frac{1}{4}y\right)^3\)
\(B=\left(x^2-\frac{1}{4}y\right)\left(x^2+\frac{1}{4}x^2y+\frac{1}{16}y^2\right)\)
\(8\left(x-\frac{1}{2}\right)\left(x^2+\frac{1}{2}x+\frac{1}{4}\right)-4x\left(1-x+2x^2\right)+2=0\)
\(\Leftrightarrow8\left[x^3-\left(\frac{1}{2}\right)^3\right]-4x+4x^2-8x^3+2=0\)
\(\Leftrightarrow8x^3-1-4x+4x^2-8x^3+2=0\)
\(\Leftrightarrow4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
8(x-1/2)(x^2+1/2x+1/4) - 4x(1-x+2x^2)+2=0
=> 8𝑥^3 − 1 − 8𝑥^3 + 4𝑥2 − 4𝑥 + 2 = 0
=> 4𝑥2 − 4𝑥 + 1 = 0
=> ( 2x - 1 )^2 = 0
=> 2x - 1 = 0
=> 2x = 1
=> x = 1/2
BD và CE là 2 đường trung tuyến.
=> EA=EB , DA=DC
ΔABC cân tại A=> AB=AC
=> AE=AD=> ΔAED cân tại A
. Xét ΔABD và Δ ACE có:
góc A chung
AB=AC (GT)
AD=AE (chứng minh trên)
=> ΔABD = ΔACE( c.g.c)
. EA = EB , DA=DC => ED là đườn TB của Δ ABC => ED //BC => tứ giác BCDE là hình thang
ΔABD = ΔACE => BD = CE ( Hai cạnh tương ứng)
=> BCDE là hình thang cân
=2001^n+8^n.47^n+625^n
=(...001) + (8.47)^n+(...625)
=(...001)+(...376)+(...625)
=(...002)
\(C=2001^n+2^{3n}.47^n+25^{2n}\)
\(=2001^n+376^n+625^n\)
2001 đồng dư với 001 ( mod100 )
=> 2001n đồng dư với 001 ( mod100 )
376 đồng dư với 076 ( mod100 )
=> 376n đồng dư với 076 ( mod100 )
625 đồng dư với 025 ( mod100 )
=> 625n đồng dư với 025 ( mod100 )
=> 2001n + 376n + 625n đồng dư với 001 + 076 + 025 ( mod200 )
=> ........002 ( mod100 )
=> đpcm
Ta có :
54n + 375
= (54)n +375
= 725n + 375
= (.....725) + 375
= ......1000
Vì 54n + 375 có 4 chữ số tận cùng là 1000 mà 1000 \(⋮\)1000
\(\Rightarrow\)54n + 375 \(⋮\)1000
TQuynh ơi !!! đề bài là : \(5^{4^n}\) nhé !! Lũy thừa tầng nha !!
Chứ ko pk là 54n
Một con gà có \(2\)chân, một con thỏ có \(4\)chân.
Gọi số gà là \(x\)(con) \(x\inℕ^∗\).
Khi đó số thỏ là: \(2x\)(con).
Ta có phương trình:
\(2x+4.2x=210\)
\(\Leftrightarrow x=21\)(thỏa mãn)
Vậy có \(2.21=42\)con thỏ.
gọi a+b+c+ac+cb+ab/a2+b2+c2 là P .
Từ giả thiết a+b+c=6 ta có:
(a+b+c)^2 = 36=a^2+b^2+c^2 + 2(ab+ac+bc) =P+ab+ac+bc
Hay P=36−ab−bc−ca
Vậy GTLN của P tương đương với GTNN của ab+bc+ca
Không mất tính tổng quát giả sử a là số lớn nhất trong a,b,c
Thì a+b+c=6 ≤ 3a , do đó 4 ≥ a ≥ 2
Lại có: ab + bc + ca ≥ ab + ca = a(b+c) = 6(6−a) ≥ 8 với 4 ≥ a ≥ 2
Do đó GTNN của ab+bc+ca=8, khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
Vậy GTLN của P là 36−8=28 khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)
giá trị lớn nhất của a+b+c+ac+cb+ab/a2+b2+c2 khi a+b+c=6,a,b,c>0 là 28
tia AB cắt DC tại E ta thấy
AC là phân giác của góc ^DAE (gt)
AC vuông DE (gt)
=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác)
lại có góc D = 60o nên ADE là tgiác đều
=> C là trung điểm DE (AC đồng thời la trung tuyến)
mà BC // AD => BC là đường trung bình của tgiác ADE
Ta có:
AB = DC = AD/2 và BC = AD/2
gt: AB + BC + CD + AD = 20
=> AD/2 + AD/2 + AD/2 + AD = 20
=> (5/2)AD = 20
=> AD = 2.20 /5 = 8 cm