K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

tia AB cắt DC tại E ta thấy 

AC là phân giác của góc ^DAE (gt) 

AC vuông DE (gt) 

=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác) 

lại có góc D = 60o nên ADE là tgiác đều 

=> C là trung điểm DE (AC đồng thời la trung tuyến) 

mà BC // AD => BC là đường trung bình của tgiác ADE 
 

Ta có: 

AB = DC = AD/2 và BC = AD/2 

gt: AB + BC + CD + AD = 20 

=> AD/2 + AD/2 + AD/2 + AD = 20 

=> (5/2)AD = 20 

=> AD = 2.20 /5 = 8 cm

27 tháng 8 2021

A=8x^3-1/125

=(2x)^3-(1/5)^3

=(2x-1/5)(4x^2+2/5x+1/25)

27 tháng 8 2021

\(A=8x^3-\frac{1}{125}\)

\(A=\left(2x\right)^3-\left(\frac{1}{5}\right)^3\)

\(A=\left(2x-\frac{1}{5}\right)\left(4x^2+\frac{2}{5}x+\frac{1}{25}\right)\)

\(B=\left(x^2\right)^3-\left(\frac{1}{4}y\right)^3\)

\(B=\left(x^2-\frac{1}{4}y\right)\left(x^2+\frac{1}{4}x^2y+\frac{1}{16}y^2\right)\)

27 tháng 8 2021

      \(8\left(x-\frac{1}{2}\right)\left(x^2+\frac{1}{2}x+\frac{1}{4}\right)-4x\left(1-x+2x^2\right)+2=0\)

\(\Leftrightarrow8\left[x^3-\left(\frac{1}{2}\right)^3\right]-4x+4x^2-8x^3+2=0\)

\(\Leftrightarrow8x^3-1-4x+4x^2-8x^3+2=0\)

\(\Leftrightarrow4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\)

\(\Leftrightarrow x=\frac{1}{2}\)

27 tháng 8 2021

8(x-1/2)(x^2+1/2x+1/4)  -  4x(1-x+2x^2)+2=0

=>   8𝑥^3 − 1  −  8𝑥^3 + 4𝑥2 − 4𝑥 + 2  =  0

=>   4𝑥2 − 4𝑥 + 1 = 0

=>  ( 2x - 1 )^2  = 0

=>  2x - 1 = 0

=>  2x  =  1

=>  x  = 1/2

 BD và CE là 2 đường trung tuyến.
=> EA=EB , DA=DC
   ΔABC cân tại A=> AB=AC
=> AE=AD=>  ΔAED cân tại A
. Xét  ΔABD và  Δ ACE có:
          góc A chung
          AB=AC (GT)
          AD=AE (chứng minh trên)
=>  ΔABD =  ΔACE( c.g.c)
. EA = EB , DA=DC => ED là đườn TB của Δ ABC => ED //BC => tứ giác BCDE là hình thang
 ΔABD =  ΔACE => BD = CE ( Hai cạnh tương ứng)
=>  BCDE là hình thang cân

=2001^n+8^n.47^n+625^n

=(...001) + (8.47)^n+(...625)

=(...001)+(...376)+(...625)

=(...002)

27 tháng 8 2021

\(C=2001^n+2^{3n}.47^n+25^{2n}\)

\(=2001^n+376^n+625^n\)

2001 đồng dư với 001 ( mod100 )

=> 2001n đồng dư với 001 ( mod100 )

376 đồng dư với 076 ( mod100 )

=> 376n đồng dư với 076 ( mod100 )

625 đồng dư với 025 ( mod100 )

=> 625n đồng dư với 025 ( mod100 )

=> 2001n + 376n + 625n đồng dư với 001 + 076 + 025 ( mod200 )

=> ........002 ( mod100 )

=> đpcm

27 tháng 8 2021

Ta có :

54n + 375

= (54)n +375

= 725+ 375

= (.....725) + 375

= ......1000 

Vì 54n + 375 có 4 chữ số tận cùng là 1000 mà 1000 \(⋮\)1000

\(\Rightarrow\)54n + 375 \(⋮\)1000

27 tháng 8 2021

TQuynh ơi !!! đề bài là : \(5^{4^n}\) nhé !! Lũy thừa tầng nha !!

Chứ ko pk là 54n

DD
27 tháng 8 2021

Một con gà có \(2\)chân, một con thỏ có \(4\)chân. 

Gọi số gà là \(x\)(con) \(x\inℕ^∗\).

Khi đó số thỏ là: \(2x\)(con). 

Ta có phương trình: 

\(2x+4.2x=210\)

\(\Leftrightarrow x=21\)(thỏa mãn) 

Vậy có \(2.21=42\)con thỏ. 

26 tháng 8 2021

gọi a+b+c+ac+cb+ab/a2+b2+c2   là P .     

Từ giả thiết a+b+c=6 ta có:

(a+b+c)^2 = 36=a^2+b^2+c^2 + 2(ab+ac+bc) =P+ab+ac+bc

Hay P=36−ab−bc−ca

Vậy GTLN của P tương đương với GTNN của ab+bc+ca

Không mất tính tổng quát giả sử a là số lớn nhất trong a,b,c

Thì a+b+c=6 ≤ 3a , do đó 4 ≥ a ≥ 2

Lại có: ab + bc + ca ≥ ab + ca = a(b+c) = 6(6−a) ≥ 8  với 4 ≥ a ≥ 2

Do đó GTNN của ab+bc+ca=8, khi \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)       

Vậy GTLN của P là 36−8=28  khi   \(\hept{\begin{cases}a=4\\b=2\\c=0\end{cases}}\)    

26 tháng 8 2021

giá trị lớn nhất của a+b+c+ac+cb+ab/a2+b2+c2 khi a+b+c=6,a,b,c>0 là 28