Bài 24: Cho hình bình hành ABCD có AB < AD. Tia phân giác của góc A căt BC ở I, tia phân giác của góc C căt AD ở K.
1) Chưng minh: Tam giác ABI là tam giác cân.
2) So sánh góc BIA và góc KCB.
3) Chưng minh: Tư giác AICK là hình bình hành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
5x - xy + y2 - 5y
= ( 5x - 5y ) - ( xy - y2 )
= 5( x - y ) - y( x - y )
= ( 5 - y )( x - y )
+ B đối xứng với A qua Ox
⇒ Ox là đường trung trực của AB
⇒ OA = OB (1)
+ C đối xứng với A qua Oy
⇒ Oy là đường trung trực của AC
⇒ OA = OC (2)
Từ (1) và (2) suy ra OB = OC (*).
+ Xét ΔOAC cân tại O (do OA = OC) có Oy là đường trung trực
⇒ Oy đồng thời là đường phân giác
Xét ΔOAB cân tại O có Ox là đường trung trực
⇒ Ox đồng thời là đường phân giác
⇒ B, O, C thẳng hàng (**)
Từ (*) và (**) suy ra O là trung điểm BC
⇒ B đối xứng với C qua O.
AA đối xứng với BB qua OxOx và OO nằm trên OxOx nên OAOA đối xứng với OBOB qua OxOx suy ra OA=OBOA=OB. (1)
Tam giác AOBAOB cân tại OO nên ˆO1=ˆO2O^1=O^2 (3)
AA đối xứng với CC qua OyOy và OO nằm trên OyOy nên OAOA đối xứng với OCOC qua OyOy suy ra OA=OCOA=OC (2)
Quảng cáo
Tam giác AOCAOC cân tại OO nên ˆO3=ˆO4O^3=O^4 (4)
Từ (1) và (2) suy ra OB=OCOB=OC (*)
Từ (3) và (4) suy ra ˆO1+ˆO2+ˆO3+ˆO4=2(ˆO2+ˆO3)=2.900=1800O^1+O^2+O^3+O^4=2(O^2+O^3)=2.900=1800
Do đó B,O,CB,O,C thẳng hàng (2*)
Từ (*) và (2*) suy ra BB đối xứng với CC qua OO.
giiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
tok đang hottttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt đó
Trả lời:
a, \(x^2-9-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}}\)
Vậy x = 3; x = - 1 là nghiệm của pt.
b, \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}}\)
Vậy x = 5; x = 4 là nghiệm của pt.
c, \(2x^2+3x-5=0\)
\(\Leftrightarrow2x^2+5x-2x-5=0\)
\(\Leftrightarrow x\left(2x+5\right)-\left(2x+5\right)=0\)
\(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\frac{5}{2}\\x=1\end{cases}}}\)
Vậy x = - 5/2; x = 1 là nghiệm của pt.
Đáp án:
ˆBKC=110oBKC^=110o
Giải thích các bước giải:
a) Ta có:
KK đối xứng với HH qua BCBC
⇒BC⇒BC là trung trực của HKHK
⇒BH=BK;CH=CK⇒BH=BK;CH=CK
Xét ΔBHC∆BHC và ΔBKC∆BKC có:
BH=BK(cmt)BH=BK(cmt)
CH=CK(cmt)CH=CK(cmt)
BC:BC: cạnh chung
Do đó ΔBHC=ΔBKC(c.c.c)∆BHC=∆BKC(c.c.c)
b) Ta có:
ˆBHK=ˆBAH+ˆABHBHK^=BAH^+ABH^ (góc ngoài của ΔABH∆ABH)
ˆCHK=ˆCAH+ˆACHCHK^=CAH^+ACH^ (góc ngoài của ΔACH∆ACH)
⇒ˆBHC=ˆBHK+ˆCHK⇒BHC^=BHK^+CHK^
=ˆBAH+ˆABH+ˆCAH+ˆACH=BAH^+ABH^+CAH^+ACH^
=ˆBAC+ˆABH+ˆACH=BAC^+ABH^+ACH^
Ta lại có:
ˆBAC+ˆABH=90oBAC^+ABH^=90o (BH⊥AC)(BH⊥AC)
ˆBAC+ˆACH=90oBAC^+ACH^=90o (CH⊥AB)(CH⊥AB)
⇒2ˆBAC+ˆABH+ˆACH=180o⇒2BAC^+ABH^+ACH^=180o
⇒ˆABH+ˆACH=180o−2ˆBAC⇒ABH^+ACH^=180o−2BAC^
Do đó:
ˆBHC=ˆBAC+180o−2ˆBAC=180o−ˆBAC=180o−70o=110oBHC^=BAC^+180o−2BAC^=180o−BAC^=180o−70o=110o
Mặt khác:
ˆBHC=ˆBKC(ΔBHC=ΔBKC)BHC^=BKC^(∆BHC=∆BKC)
⇒ˆBKC=110o
a) AI là phân giác góc BAD
=> ^BAI=^IAD (=1/2 ^BAD) (1)
mà ^IAD=^ABI ( so le trong)
=> ^BAI=^ABI
=> Tam giác ABI cân
b) Vì CK là phân giác góc DCB
=> ^BCK=^KCD (=1/2 ^BCD) (2)
Mà ^BAD =^ BCD (3)
Từ (1) ; (2); (3) => ^BIA = ^KCB
3) Ta có: ^BIA =^KCB ( chưng minh câu b)
và ^BAI= ^BIA ( tam giác BAI cân)
=> ^KCB=^BIA
=> AI//KC
mà AK//IC ( vì DA//BC)
=> AKCI là hình bình hành