Cho tam giác DEF cân tại D với đường trung tuyến DI.
a) Cm: Tam giác DEI = Tam giác DFI
b) Các góc DIE và góc DIF là những góc gì?
c) Biết DE = DF = 13cm, EF = 10cm. Hãy tính độ dài đường trung tuyến DI.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{2bz-3cy}{a}=\frac{3cx-az}{2b}=\frac{ay-2bx}{3c}\)
Áp dụng t/c của DTSBN ta có :
\(\frac{2abz-3acy}{a^2}=\frac{6bcx-2baz}{4b^2}=\frac{3cay-6cbx}{9c^2}\)\(=\frac{2abz-3acy+6bcx-2baz+3cay-6cbx}{a^2+4b^2+9c^2}\) \(=\frac{0}{a^2+4b^2+9c^2}=0\)
Suy ra :
+) \(\frac{2bz-3cy}{a}=\frac{2abz-3acy}{a^2}=0\)\(\Rightarrow\)2bz = 3cy \(\Rightarrow\)\(\frac{z}{3c}=\frac{y}{2b}\) (1)
+) \(\frac{ay-2bx}{3c}=\frac{3cay-6cbx}{9c^2}=0\)\(\Rightarrow\)ay = 2bx \(\Rightarrow\)\(\frac{y}{2b}=\frac{x}{a}\) (2)
Từ (1) và (2) suy ra \(\frac{x}{a}=\frac{y}{2b}=\frac{z}{3c}\)
Xét tam giác ABC, có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
=> \(80^o+50^o+\widehat{C}=180^o\)
=> \(\widehat{C}=50^o\)
Ta có:
\(\widehat{B}=50^o\)
\(\widehat{C}=50^o\)
Suy ra: \(\widehat{B}=\widehat{C}\)
=> Tam giác ABC cân tại A.
Góc C bằng :
180o-80o-500=50o
vì Góc C =Góc B nên suy ra Tam giác ABC là tam giác cân
Áp dụng định lý Pitago:
$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)
$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)
$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)
- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2+5^2=13^2\)
\(\Rightarrow AC=12\left(cm\right)\)
- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)
=> Hai tam giác trên đồng dạng .
=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)
=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)
=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)
- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :
\(AH^2+BH^2=AB^2\)
\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)
Câu hỏi của Pachirisu - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tại link này nhé!
a) Tam giác DEI và DFI có
DE = DF (gt)
EI = FI (gt)
DI chung
=> Tam giác DEI = tam giác DFI (trường hợp bằng nhau C-C-C)
b) Theo câu a, Tam giác DEI = tam giác DFI => góc DIE = góc DFI
Vì EIF thẳng hàng => góc DIE + góc DFI = 1800 , mà 2 góc này bằng nhau
=> góc DIE = góc DFI = 180o /2 = 90o (góc vuông)
c) EF = 10 => EI = 10/2 = 5
Xét tam giác DIE vuông ở I:
DI2 + EI2 = DE2 (Định lý Pitago)
DI2 + 52 = 132
DI2 = 169 - 25 =144 = 122
=> DI = 12 cm