Cho \(F\left(x\right)=ax+b\) và \(G\left(y\right)=cy+d\) lần lượt có nghiệm \(x_1\) và \(y_1\). Chứng minh rằng nếu ad = bc (a, b, c, d ≠ 0) thì \(x_1=y_1\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công toán (biểu tượng $\sum$ góc trái khung soạn thảo để được hỗ trợ tốt hơn. Đọc đề thế này khó dịch.
\(\dfrac{27}{23}\) + \(\dfrac{5}{21}\) - \(\dfrac{4}{23}\) + \(\dfrac{6}{21}\) + \(\dfrac{1}{2}\)
= (\(\dfrac{27}{23}\) - \(\dfrac{4}{23}\)) + (\(\dfrac{5}{21}\) + \(\dfrac{6}{21}\)) + \(\dfrac{1}{2}\)
= \(\dfrac{23}{23}\) + \(\dfrac{11}{21}\) + \(\dfrac{1}{2}\)
= 1 + \(\dfrac{11}{21}\) + \(\dfrac{1}{2}\)
= \(\dfrac{42}{42}\) + \(\dfrac{22}{42}\) + \(\dfrac{21}{42}\)
= \(\dfrac{85}{42}\)
A = \(xy^2z^3\) + \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\)
A \(\times\) \(xyz\) = \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) + \(x^{2015}y^{2016}z^{2017}\)
A \(\times\) \(xyz\) - A = \(x^{2015}\)\(y^{2016}\)\(z^{2017}\) - \(xy^2z^3\)
A\(\times\)( \(xyz\) - 1) = \(x^{2015}\)\(y^{2016}z^{2017}\) - \(xy^2z^3\)
A = (\(x^{2015}\) \(y^{2016}\) \(z^{2017}\) - \(xy^2z^3\)) : (\(xyz\) - 1)
Thay \(x\) = -1; \(y\) = -1; \(z\) = -1
A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}
A = [ 1 - 1] : [-1-1]
A = 0: (-2)
A = 0
A = 13 + 23 + 33 + 43 +...+ 1003
Ta có: B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2
Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)
Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2
Ta cần chứng minh B đúng với n = k + 1.
⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2
Ta có:
B = 13 + 23 + 33 +....+ k3 + (k+1)3
B = (1+2+3+...+k)2 + (k + 1)3
B = {(k +1)k:2}2 + (k+1)3 = (k+1)2{ \(\dfrac{k^2}{4}\) + k + 1} =(k+1)2(k2+4k+4)2: 4
B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4
B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2
Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2
⇒B = (1+2+3+...+ k+1)2 (đpcm)
Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2
Áp dụng công thức trên ta có:
A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2
C = 1 + 2 + 3 + 4 +...+100
Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1
Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100
Tổng dãy số trên là: C = (100 +1)\(\times\) 100 : 2 = 5050
A = 50502
A = 13 + 23 + 33 + 43 +...+ 1003
Ta có: B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2
Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)
Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2
Ta cần chứng minh B đúng với n = k + 1.
⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2
Ta có:
B = 13 + 23 + 33 +....+ k3 + (k+1)3
B = (1+2+3+...+k)2 + (k + 1)3
B = {(k +1)k:2}2 + (k+1)3 = (k+1)2{ + k + 1} =(k+1)2(k2+4k+4)2: 4
B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4
B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2
Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2
⇒B = (1+2+3+...+ k+1)2 (đpcm)
Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2
Áp dụng công thức trên ta có:
A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2
C = 1 + 2 + 3 + 4 +...+100
Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1
Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100
Tổng dãy số trên là: C = (100 +1) 100 : 2 = 5050
A = 50502
HT!
Câu 11
Giá trị của biểu thức:A = \(xy-2x^2y\) + 3\(xy\) + 2y\(x^2\) tại \(x\) = 1; \(y\) = \(-\dfrac{1}{2}\)
A = (\(xy\) + 3\(xy\)) - (2\(x^2y\) - 2\(yx^2\))
A = 4\(xy\)
Thay \(x\) = 1; y = - \(\dfrac{1}{2}\) vào biểu thức A ta có:
A = 4 \(\times\)1 \(\times\) ( - \(\dfrac{1}{2}\))
A = -2
Câu 9: Diện tích hình vuông là: \(x\) \(\times\) \(x\) = \(x^2\) (cm2)
Diện tích hình chữ nhật là: \(x\times y\) = \(xy\) (cm2)
Biểu thức biểu thị tổng diện tích của hình vuông và hình chữ nhật là:
C. \(x^2\) + \(xy\)
Bài 10: Thu gọn đa thức:
\(xy\) - 2\(x^2\)y + 3\(xy\) + 2y\(x^2\)
= (\(xy\) + 3\(xy\)) - ( 2\(x^2\)y - 2y\(x^2\))
= 4\(xy\) - 0
Chọn C. 4\(xy\)
= 4\(xy\)
a) Xét ΔABD và ΔEBD có:
- BE = BA (giả thuyết)
- \(\widehat{ABD}=\widehat{EBD}\) (vì BD là tia phân giác của \(\widehat{ABC}\) )
- BD là cạnh chung
Suy ra ΔABD = ΔEBD (c.g.c)
b) Từ a) suy ra DE = AD (vì hai cạnh tương ứng) và \(\widehat{BAD}=\widehat{BED}=90^o\) (vì hai góc tương ứng), hay \(DE\perp BC\)
c) Từ BE = BA và DE = AD suy ra B và D đều nằm trên đường trung trực của AE, hay BD là đường trung trực của AE
Do \(x_1,y_1\) lần lượt là các nghiệm của \(F\left(x\right)=ax+b\) và \(G\left(y\right)=cy+d\) nên ta có \(ax_1+b=cy_1+d=0\) (*)
Mặt khác, \(ad=bc\Leftrightarrow\dfrac{a}{b}=\dfrac{c}{d}\). Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\left(k\ne0\right)\) thì suy ra \(a=kb;c=kd\). Thay vào (*), ta có \(kbx_1+b=kdy_1+d=0\) \(\Leftrightarrow b\left(kx_1+1\right)=d\left(ky_1+1\right)=0\) \(\Leftrightarrow kx_1+1=ky_1+1=0\) (do \(b,d\ne0\)) \(\Leftrightarrow x_1=y_1\) (đpcm)