xác định m để phương trình có nghiệm
\(\frac{x-3}{x-1}\) - 2 =\(\frac{-x-m}{x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(2x+3\right)=\frac{\left(2x+3\right)-13}{2}\)
Vậy \(f\left(x\right)=\frac{x-13}{2}\)
a) Gọi đường thẳng đi qua M(3;4) và song song với \(\left(d\right):y=2x+6\)là \(\left(d'\right):y=a'x+b'\)
Vì \(\left(d'\right)//\left(d\right)\Rightarrow a'=2\)
Vậy phương trình đường thẳng (d') có dạng \(\left(d'\right):y=2x+b'\)
Mặt khác (d') đi qua M(3;4) nên điểm M(3;4) thuộc \(\left(d'\right):y=2x+b'\)
Thay \(x=3;y=4\)vào hàm số \(y=2x+b'\)ta có:
\(4=2.3+b'\Leftrightarrow b'=-2\)
Vậy phương trình đường thẳng đi qua M(3;4) và song song với \(\left(d\right):y=2x+6\)là \(\left(d'\right):y=2x-2\)
b) Gọi OH là khoảng cách từ O đến (d). Gọi giao điểm của (d):y = 2x + 6 với hai trục Ox, Oy lần lượt là A(xA;0), B(0;yB).
Thay x = xA; y = 0 vào hàm số y = 2x + 6, ta có: \(0=2x_A+6\Leftrightarrow x_A=-3\)
Thay x = 0; y = yB vào hàm số y = 2x + 6, ta có: \(y_B=2.0+6=6\)
Vì \(OA=\left|x_A\right|;OB=\left|y_B\right|\)\(\Rightarrow OA=\left|-3\right|=3;OB=\left|6\right|=6\)
\(\Delta OAB\)vuông tại O, đường cao OH \(\Rightarrow\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\left(htl\right)\)
Rồi bạn thay OA, OB vào và dễ dàng tính được OH
\(=\frac{\left(\frac{a^2+b^2-ab}{ab}\right)\left(\frac{a+b}{ab}\right)^2}{\frac{a^4+b^4+a^3b+ab^3}{\left(ab\right)^2}}=\)
\(=\frac{\left(a^2+b^2-ab\right)\left(a+b^2\right)}{ab\left(a^4+b^4+a^3b+ab^3\right)}=\frac{\left(a+b\right)\left(a^3+b^3\right)}{ab\left(a^4+b^4+a^3b+ab^3\right)}=\)
\(=\frac{a^4+ab^3+a^3b+b^4}{ab\left(a^4+b^4+a^3b+ab^3\right)}=\frac{1}{ab}\left(đpcm\right)\)
Ta có :
\(x^2+y^2+xy=3\)
\(\Rightarrow\left(x+y\right)^2-xy=3\)
\(\Rightarrow \left(x+y\right)^2=3+xy\)
hay \(S^2=3+xy\le3+\frac{\left(x+y\right)^2}{4}=3+\frac{S^2}{4}\)
\(\Rightarrow S^2\le3+\frac{S^2}{4}\)
\(\Rightarrow S^2\le4\)
\(\Rightarrow-2\le S\le2\)
GTLN của S = 2
= có lm thì mới có ăn nha bn