Giải giúp mk bài này với
A = 1/101 + 1/102 + 1/103 + ... + 1/200
So sánh A với 3/4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
250 : ( x - 8 ) = 25
x - 8 = 250 : 25
x - 8 = 10
x = 10 + 8
x = 18
vậy x = 18
( \(\dfrac{3}{25}\) - \(\dfrac{4}{5}\)) x \(\dfrac{25}{3}\)
= ( \(\dfrac{3}{25}\) - \(\dfrac{20}{25}\)) x \(\dfrac{25}{3}\)
= \(-\dfrac{17}{25}\) x \(\dfrac{25}{3}\)
= - \(\dfrac{17}{3}\)
ĐK : \(x;y\ne0\)
Ta có : \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{x+y}{xy}=\dfrac{1}{8}\)
\(\Leftrightarrow8.\left(x+y\right)=xy\)
\(\Leftrightarrow xy-8x-8y=0\)
\(\Leftrightarrow\left(xy-8x\right)-\left(8y-64\right)=64\)
\(\Leftrightarrow x.\left(y-8\right)-8.\left(y-8\right)=64\Leftrightarrow\left(x-8\right).\left(y-8\right)=64\)
Do x;y \(\inℤ\) ta có bảng sau
x - 8 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | -1 | -2 | -4 | -8 | -16 | -32 | -64 |
y - 8 | 64 | 32 | 16 | 8 | 4 | 2 | 1 | -64 | -32 | -16 | -8 | -4 | -2 | -1 |
x | 9 | 10 | 12 | 16 | 24 | 40 | 72 | 7 | 6 | 4 | 0(loại) | -8 | -24 | -56 |
y | 72 | 40 | 24 | 16 | 12 | 10 | 9 | -56 | -24 | -8 | 0(loại) | 4 | 6 | 7 |
Vậy (x;y) = (9;72) ; (10 ; 40) ; (12 ; 24) ; (16;16) ; (24;12) ; (7;-56) ; (6;-24) ; (4;-8) và các hoán vị của chúng
a) đặt
\(S=1+\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{99\cdot101}\\ 2S=2+\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{99\cdot101}\\ 2S=2+\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\\ 2S=2+1-\dfrac{1}{101}\\ 2S=\dfrac{302}{101}\\ S=\dfrac{151}{101}\)
b)
đặt
\(S=\dfrac{1}{2}+\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{98\cdot101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{98}-\dfrac{1}{101}\\ 3S=\dfrac{3}{2}+\dfrac{1}{2}-\dfrac{1}{101}\\ 3S=\dfrac{201}{101}\\ S=\dfrac{67}{101}\)
\(2A-1=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{99}-\dfrac{1}{101}\)
\(2A-1=1-\dfrac{1}{101}=\dfrac{100}{101}\)
\(2A=\dfrac{201}{101}\Rightarrow A=\dfrac{201}{202}\)
\(\dfrac{n}{n-5}=\dfrac{n-5+5}{n-5}=\dfrac{n-5}{n-5}+\dfrac{5}{n-5}=1+\dfrac{5}{n-5}\)
Để \(\dfrac{n}{n-5}\in Z\) thì \(\dfrac{5}{n-5}\in Z\)
\(\Rightarrow n-5\in\text{Ư}_{\left(5\right)}=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow n\in\left\{0;4;6;10\right\}\)
Do \(n\in N\) nên tất cả các giá trị đều nhận
Vậy ...
\(S=\dfrac{2^2}{3x5}+\dfrac{2^2}{5x7}+\dfrac{2^2}{7x9}+...+\dfrac{2^2}{97x99}\)
\(\dfrac{S}{2}=\dfrac{2}{3x5}+\dfrac{2}{5x7}+\dfrac{2}{7x9}+...+\dfrac{2}{97x99}\)
\(\dfrac{S}{2}=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}...+\dfrac{1}{97}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{32}{99}\)
S=\(\dfrac{64}{99}\)