Cho a – b = 4 và a2 + b2 = 106. Không giải tìm a ; b. Hãy tính a3 + b3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\([\frac{\left(2x+1\right)}{3}]-[\frac{\left(3x-2\right)}{6}]=\frac{x+1}{2}\)
\(\Leftrightarrow\frac{x}{6}+\frac{2}{3}=\frac{x}{2}+\frac{1}{2}\)
\(\Leftrightarrow\frac{x}{6}.6+\frac{2}{3}.6=\frac{x}{2}.6+\frac{1}{2}.6\)
\(\Leftrightarrow x+4=3x+3\)
\(\Leftrightarrow x+4=3x+3\)
\(\Leftrightarrow x+4-4=3x+3-4\)
\(\Leftrightarrow x=3x-1\)
\(\Leftrightarrow\frac{-2x}{-2}=\frac{-1}{-2}\)
\(\Leftrightarrow x=\frac{1}{2}\)
a) \(x^7+x^5+1\)
\(=x^7-x+x^5-x^2+x^2+x+1\)
\(=x\left(x^6-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x^3-1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=x\left(x^3+1\right)\left(x-1\right)\left(x^2+x+1\right)+x^2\left(x-1\right)\left(x^2+x+1\right)+\left(x^2+x+1\right)\)]
\(=\left(x^2+x+1\right)\left[x\left(x^3+1\right)\left(x-1\right)+x^2\left(x-1\right)+1\right]\)
\(=\left(x^2+x+1\right)\left[x\left(x^4-x^3+x-1\right)+x^3-x^2+1\right]\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^2-x+x^3-x^2+1\right)\)
\(=\left(x^2+x+1\right)\left(x^5-x^4+x^3-x+1\right)\)
b) \(x^5-x^4-1\)
\(=x^5-x^4+x^3-x^3+x^2-x-x^2+x-1\)
\(=x^3\left(x^2-x+1\right)-x\left(x^2-x+1\right)-\left(x^2-x+1\right)\)
\(=\left(x^2-x+1\right)\left(x^3-x-1\right)\)
Answer:
\(B=x^{15}-8x^{14}+8x^{13}-8x^{12}+...-8x^2+8x-5\)
Có: \(x=7\)
\(\Rightarrow8=x+1\)
\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-\left(x+1\right)x^{12}+...-\left(x+1\right)x^2+\left(x+1\right)x-5\)
\(B=x^{15}-x^{15}-x^{14}+x^{14}+x^{13}-x^{13}+x^{12}+...-x^3-x^2+x^2+x-5\)
\(B=\left(x^{15}-x^{15}\right)+\left(-x^{14}+x^{14}\right)+\left(x^{13}+x^{13}\right)+\left(-x^{12}+x^{12}\right)+...+\left(x^3-x^3\right)+\left(-x^2+x^2\right)+x-5\)
\(B=x-5\)
Thay vào được
\(B=7-5=2\)