Cho biểu thức hai biến .
Tìm các giá trị của sao cho phương trình (ẩn ) nhận làm nghiệm.
Trả lời:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a không rõ đề bài nên mình bỏ qua nhé
b) \(x^2-5x+6=0\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}}\) Vậy............
\(\frac{x+y+z}{3}=\sqrt{673}\). Bình phương hai vế \(\Rightarrow\left(\frac{x+y+z}{3}\right)^2=\left(\sqrt{673}\right)^2\)
\(\Leftrightarrow\frac{\left(x+y+z\right)^2}{9}=673\Leftrightarrow\frac{x^2+y^2+z^2+2\left(xy+xz+yz\right)}{3}=673.3=2019\)
Tiếp theo bạn chứng minh \(x^2+y^2+z^2\ge xy+xz+yz\)
( Dễ thôi, nhân đôi hai vế rồi chuyến sang vế trái tách ghép là được 3 hằng đẳng thức luôn \(\ge0\) )
Sau khi chứng minh được thì tiếp tục cái đẳng thức trên : v
\(\Rightarrow\frac{x^2+y^2+z^2+2\left(xy+xz+yz\right)}{3}\le\frac{xy+xz+yz+2\left(xy+xz+yz\right)}{3}\)
\(=\frac{3\left(xy+xz+yz\right)}{3}=xy+xz+yz\Rightarrow\frac{\left(x+y+z\right)^2}{3}\ge xy+xz+yz\)
. Vì \(\frac{x^2+y^2+z^2+2\left(xy+xz+yz\right)}{3}=\frac{\left(x+y+z\right)^2}{3}=2019\)
\(\Rightarrow\frac{\left(x+y+z\right)^2}{3}\ge xy+xz+yz\Leftrightarrow xy+xz+yz\le2019\) ( đpcm )
What the heo, lớp 7 đã khó nay lại còn lớp 8, thôi, chịu luôn !!!!!!