BÀI TẬP 18
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm O đường kính AH cắt AB, AC lần
lượt tại E và F. Biết AB=6cm , BC =10 cm
a) Tính AC , AH
b) Chứng minh tứ giác AEHF là hình chữ nhật
c) Chứng minh AE.AB = AF. AC
d) Gọi I, K lần lượt là trung điểm BH và HC. Chứng minh IE, KF là tiếp tuyến của đường tròn (O)
BÀI TẬP 19
Cho đường tròn (O; R), đường kính AB. Lấy điểm M thuộc (O) sao cho góc ABM nhỏ hơn 45o. Vẽ dây
cung MN ⊥ AB. Tia BM cắt tia NA tại P. Gọi Q là điểm đối xứng với P qua đường thẳng AB. Gọi K là
giao điểm của PQ với AB.
1) Chứng minh các điểm P, K, A, M cùng thuộc một đường tròn.
2) Chứng minh ∆PKM cân.
3) Chứng minh KM là tiếp tuyến của (O).
4) Xác định vị trí của điểm M trên đường tròn (O) để tứ giác PKNM là hình thoi.
BÀI TẬP 20
Cho đường tròn (O; R), đường kính AB. Trên tiếp tuyến tại A của đường tròn (O) lấy điểm C sao cho
AC = 2R. Gọi D là giao điểm của BC với đường tròn (O).
1) Chứng minh: AD là trung tuyến của ∆ABC.
2) Vẽ dây cung AE ⊥ OC tại H. Chứng minh: CE là tiếp tuyến của đường tròn (O).
3) Đường thẳng BE cắt đường thẳng OD tại F. Tính số đo của góc OFB.
4) Gọi K là hình chiếu của điểm E xuống AB, M là giao điểm của EK với BC. Chứng minh: ME = MK.
Giúp mình với ạ, mình đang cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện vẫn là điều kiện: \(x\ge1\)
Phương trình đã cho \(\Leftrightarrow x^2-2x\sqrt{x}+\left(\sqrt{x}\right)^2+\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=0\)
\(\Leftrightarrow\left(x-\sqrt{x}\right)^2+\sqrt{\left(x-1\right)\left(x^2+x+1\right)}=0\)
Vì \(\left(x-\sqrt{x}\right)^2\ge0\)và \(\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\ge0\)
\(\Leftrightarrow\left(x-\sqrt{x}\right)^2+\sqrt{\left(x-1\right)\left(x^2+x+1\right)}\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-\sqrt{x}=0\\\left(x-1\right)\left(x^2+x+1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\sqrt{x}\left(\sqrt{x}-1\right)=0\\\left(x-1\right)\left(x^2+x+1\right)=0\end{cases}}\)
Vì \(x^2+x+1=x^2+2x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)nên ta chỉ xét 2 trường hợp:
TH1: \(\sqrt{x}=0\Leftrightarrow x=0\)(loại)
TH2: \(x-1=0\Leftrightarrow x=1\)(nhận)
Vậy phương trình đã cho có nghiệm là \(x=1\)
Mình nói thêm là mỗi hình vuông nhận một cạnh của bát giác làm cạnh của nó.
Điều kiện \(x,y\ne0\)
Đặt \(\frac{1}{x}=a\), \(\frac{1}{y}=b\), khi đó hệ phương trình đã cho tương đương với:
\(\hept{\begin{cases}4a+9b=\frac{11}{7}\\4a+6b=\frac{26}{21}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{\frac{26}{21}-6b}{4}\\4a+9b-4a-6b=\frac{11}{7}-\frac{26}{21}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{\frac{26}{21}-6b}{4}\\3b=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{\frac{26}{21}-6.\frac{1}{9}}{4}=\frac{1}{7}\\b=\frac{1}{9}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{7}\\\frac{1}{y}=\frac{1}{9}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=9\end{cases}}\left(nhận\right)\)
Vậy hệ phương trình đã cho có nghiệm là \(\left(7;9\right)\)
Answer:
\(B=\frac{\cos^2a-3\sin^2a}{3-\sin^2a}\)
Có:
\(\tan a=3\)
\(\Leftrightarrow\frac{\sin a}{\cos a}=3\)
\(\Leftrightarrow\sin a=3\cos a\)
Thay vào B
\(B=\frac{\cos^2a-3\left(3\cos a\right)^2}{3\left(\sin^2a+\cos^2a\right)-\left(3\cos a\right)^2}\)
\(=\frac{\cos^2a-27\cos^2a}{3\left(3\cos a\right)^2+3\cos^2a-9\cos^2a}\)
\(=\frac{-26\cos^2a}{21\cos^2a}\)
\(=-\frac{26}{21}\)