góc tạo bởi đường thẳng y=x+3 và trục Ox là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đổi 24p= 2/5 giờ, 18p=3/10 giờ
gọi độ dài quãng đường AB là x (km) (x>0)
thời gian xe dự định đi từ A đến B là: x/50 ( giờ)
độ dài quãng đường đầu xe đi được là : 50. 2/5= 20 (km/h)
=> độ dài quãng đường còn lại là x-20(km/h)
thời gian đi đoạn đường xấu lúc sau là : (x-20)/40 ( giờ)
ta có phương trình: 2/5 + (x-20)/40= x/50 + 3/10
<=> ...<=> x =80( km)(thỏa mãn0
vậy quãng đường AB dài 80km
x2 + 2x + 1 = (x + 2). căn bậc 2 của x2 + 1
Vậy ta có:
(x2 + 2x + 1) . (x2 + 1) = (x + 2).(x2 + 1)
(x2 + 2x + 1) . (x2 + 1) = x.(x2 + 1) + 2.(x2 + 1)
(x2 + 2x + 1) . (x2 + 1) = x3 + x + 2x2 + 2
= x2.(x2 + 1) + 2x.(x2 + 1) + x2 + 1 = x3 + x + 2x2 + 2
= x4 + x2 + 2x3 + 2x + x2 + 1 = x3 + x + 2x2 + 2
= x4 + 2x2 + 2x + 2x3 + 1 = x3 + x + 2x2 + 2
= x4 + 2x + 2x3 + 1 = x3 + x + 2
\(x^2+2x+1=\left(x+2\right)\sqrt{x^2+1}\)
\(\Leftrightarrow x^2-3=\left(x+2\right)\left(\sqrt{x^2+1}-2\right)\)
\(\Leftrightarrow x^2-3=\left(x+2\right)\frac{x^2+1-4}{\sqrt{x^2+1}+2}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3=0\\1=\frac{x+2}{\sqrt{x^2+1}+2}\end{cases}}\)
\(\Leftrightarrow x^2-3=0\)
\(\Leftrightarrow x=\pm\sqrt{3}\)
a, Hoành độ giao điểm (P) ; (d) thỏa mãn pt
\(x^2=2x-m\Leftrightarrow x^2-2x+m=0\)
Để pt có 2 nghiệm pb khi \(\Delta'=1-m>0\Leftrightarrow m< 1\)
Vậy với m < 1 thì (P) cắt (d) tại 2 điểm pb
b, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=m\end{cases}}\)
Ta có : \(\frac{1}{x_1^2}+\frac{1}{x_2^2}=2\Leftrightarrow\frac{x_1^2+x_2^2}{x_1^2x_2^2}=2\)
\(\Leftrightarrow\frac{\left(x_1+x_2\right)^2-2x_1x_2}{\left(x_1x_2\right)^2}=2\)Thay vào ta có :
\(\Leftrightarrow\frac{4-2m}{m^2}=2\Leftrightarrow4-2m=2m^2\Leftrightarrow2m^2+2m-4=0\)
mà a + b + c = 0 => 2 + 2 - 4 = 0
vậy pt có 2 nghiệm
\(m_1=1\left(ktm\right);m_2=-2\left(tm\right)\)
Áp dụng BĐT Cô-si cho hai số dương x và y, ta có: \(\sqrt{xy}\le\frac{x+y}{2}\)
\(\Leftrightarrow\sqrt{xy}+y\le\frac{x+y}{2}+y=\frac{x+y+2y}{2}=\frac{x+3y}{2}\)
\(\Leftrightarrow\frac{x+3y}{\sqrt{xy}+y}\ge\frac{x+3y}{\frac{x+3y}{2}}=2\)
Dấu "=" xảy ra khi \(x=y\)
Vậy GTNN của P là 2 khi \(x=y\)
Ta có :
\(tanx=2=x=90^0\)
HT