Ta biết rằng: Một đa thức bằng đa thức 0 khi và chỉ khi tất cả các hệ số của nó bằng 0.
Tìm để đa thức là đa thức , với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x là số mà một bạn chọn
⇒ số còn lại là x + 5.
⇒ tích của hai số là x(x+5).
Theo đề bài ta có phương trình:
x(x+ 5) = 150
⇔ x2 + 5x = 150
⇔ x2 + 5x – 150 = 0 (*)
Phương trình (*) có: a = 1; b = 5; c = -150
⇒ Δ = 52 – 4.1.(-150) = 625 > 0
⇒ (*) có hai nghiệm
Vậy hai số mà Minh và Lan phải chọn là 10 và 15.
Hoặc hai số mà hai bạn chọn là -10 và –15.
\(\sqrt{3x^2-12x+21}=\sqrt{3x^2-12x+12+9}=\sqrt{3\left(x-2\right)^2+9}\ge\sqrt{9}=3\)
\(\sqrt{5x^2-20x+24}=\sqrt{5x^2-20x+20+4}=\sqrt{5\left(x-2\right)^2+4}\ge\sqrt{4}=2\)
\(-2x^2+8x-3=-2x+8x-8+5=-2\left(x-2\right)^2+5\le5\)
\(VP\ge3+2=5,VT\le5\)
Suy ra \(VP=VT=5\)
Suy ra nghiệm của phương trình đạt tại \(x-2=0\Leftrightarrow x=2\).
Bài 1 :
\(\Delta'=m^2-2\left(m-2018\right)=m^2-2m+2018=\left(m-1\right)^2+2017>0\forall m\)
Vậy pt luôn có 2 nghiệm phân biệt
a) \(E=2\sqrt{40\sqrt{12}}+3\sqrt{5\sqrt{48}}-2\sqrt{\sqrt{75}}-4\sqrt{15\sqrt{27}}.\)
\(=8\sqrt{5\sqrt{3}}+6\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}-12\sqrt{5\sqrt{3}}}\)
\(=0\)
b) \(F=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}.\)
Vì \(=\frac{5}{12}-\frac{1}{\sqrt{6}}=\frac{5-2\sqrt{6}}{12}=\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}\)
\(\frac{1}{\sqrt{3}}+\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}=\frac{2\sqrt{3}+\sqrt{2}}{6}\)
Nên \(F=\frac{2\sqrt{3}+\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}}=\frac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\frac{3\sqrt{3}}{6}=\frac{\sqrt{3}}{2}\)
a)C=\(\frac{1}{\sqrt{3}+\sqrt{2}-\sqrt{6}}\) -\(\frac{1}{\sqrt{3}+\sqrt{2}+\sqrt{6}}\)
=\(\frac{1+\sqrt{6}}{\sqrt{3}+\sqrt{2}}-\frac{1-\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
=\(\frac{1+\sqrt{6}-1+\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
=\(\frac{2\sqrt{6}}{\sqrt{3}+\sqrt{2}}\)
, \(A=\frac{\sqrt{7}-5}{2}-\frac{6-2\sqrt{7}}{4}+\frac{6}{\sqrt{7}-2}-\frac{5}{4+\sqrt{7}}\)
\(=\frac{2\sqrt{7}-10-6+2\sqrt{7}}{4}+\frac{6\left(\sqrt{7}+2\right)}{3}-\frac{5\left(4-\sqrt{7}\right)}{9}\)
\(=\frac{-16+4\sqrt{7}}{4}+\frac{18\sqrt{7}+36-20+5\sqrt{7}}{9}=-4+\sqrt{7}+\frac{23\sqrt{7}+16}{9}\)
b,\(B=\frac{2}{\sqrt{6}-2}+\frac{2}{\sqrt{6}+2}+\frac{5}{\sqrt{6}}=\frac{2\left(\sqrt{6}+2\right)+2\left(\sqrt{6}-2\right)}{2}+\frac{5\sqrt{6}}{6}\)
\(=\frac{12\sqrt{6}+5\sqrt{6}}{6}=\frac{17\sqrt{6}}{6}\)
a, \(\frac{a}{\sqrt{a}}=\sqrt{a}\)
b, \(\frac{a}{\sqrt{ab}}=\frac{\sqrt{a}}{\sqrt{b}}=\frac{\sqrt{ab}}{b}\)
c, \(\frac{x}{\sqrt{3x^3}}=\frac{x}{x\sqrt{3x}}=\frac{1}{\sqrt{3x}}=\frac{\sqrt{3x}}{3x}\)
d, \(\frac{4y^2}{\sqrt{2y^5}}=\frac{4y^2}{y^2\sqrt{2y}}=\frac{4}{\sqrt{2y}}=\frac{4\sqrt{2y}}{2y}=\frac{2\sqrt{2y}}{y}\)
a)\(\dfrac{a}{\sqrt{a}}=\dfrac{a\sqrt{a}}{a}=\sqrt{a}\) b) \(\dfrac{a}{\sqrt{ab}}=\dfrac{a\sqrt{ab}}{\left(\sqrt{ab}\right)^2}=\dfrac{a\sqrt{ab}}{ab}=\dfrac{\sqrt{ab}}{b}\) c) \(\dfrac{x}{\sqrt{3x^3}}=\dfrac{x\sqrt{3x}}{\sqrt{3x^3.\sqrt{3x}}}=\dfrac{x\sqrt{3x}}{\left(\sqrt{3x^2}\right)^2}=\dfrac{x\sqrt{3x}}{\left(3x^2\right)^2}=\dfrac{x\sqrt{3x}}{3x^2}=\dfrac{\sqrt{3x}}{3x}\)