Rút gọn:
a) $M=\sqrt[3]{7+5 \sqrt{2}}$;
b) $N=\sqrt[3]{6 \sqrt{3}-10}$;
c) $P=\sqrt[3]{5 \sqrt{2}-7}-33 \sqrt{2}$;
d) $Q=\sqrt[3]{6 \sqrt{3}+10}-5 \sqrt{3}$.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xem gi
co ban nho cua toi
may bi loi unikey thong cam nha moi nguoi
hihi
a) \(\sqrt[3]{x}< 2\Leftrightarrow\left(\sqrt[3]{x}\right)^3< 2^3\Leftrightarrow x< 8\)
b) \(\sqrt[3]{2x-1}>-3\Leftrightarrow\left(\sqrt[3]{2x-1}\right)^3>\left(-3\right)^3\Leftrightarrow2x-1>-27\Leftrightarrow2x>-26\Leftrightarrow x>-13\)
c) \(\sqrt[3]{2-3x}\le1\Leftrightarrow\left(\sqrt[3]{2-3x}\right)^3\le1\Leftrightarrow2-3x\le1\Leftrightarrow3x\ge1\Leftrightarrow x\ge\frac{1}{3}\)
d) \(\sqrt[3]{3-4x}\ge5\Leftrightarrow\left(\sqrt[3]{3-4x}\right)^3\ge5^3\Leftrightarrow3-4x\ge125\Leftrightarrow4x\le-122\Leftrightarrow x\le-\frac{61}{2}\)
a) \(\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=8\\x\left(x+1\right)+y\left(y+1\right)+xy=17\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+xy=7\\x^2+y^2+x+y+xy=17\end{cases}}\)
Dat \(\hept{\begin{cases}xy=P\\x+y=S\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}S+P=7\\S^2+S-P=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+S-\left(7-S\right)=17\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P=7-S\\S^2+2S=24\end{cases}}\)
\(\hept{\begin{cases}S=-6\\P=13\\S=4;P=3\end{cases}}\)
b)
a) x=\(\sqrt[3]{2}\) b x=\(\sqrt[3]{-3}\) c) x=0,2 d)x=21 e) x=15 f) x=3
30,001x3=3(0,1x)3=0,1x;
\sqrt[3]{-125 a^{12}}=\sqrt[3]{\left(-5 a^{4}\right)^{3}}=-5 a^{4};3−125a12=3(−5a4)3=−5a4;
\sqrt[3]{27 x^{6}}=\sqrt[3]{\left(3 x^{2}\right)^{3}}=3 x^{2};327x6=3(3x2)3=3x2;
\sqrt[3]{-0,343 a^{3}}=\sqrt[3]{(-0,7 a)^{3}}=-0,7 a;3−0,343a3=3(−0,7a)3=−0,7a;
Ta rút gọn các biểu thức như sau:
\(\sqrt[3]{0,001x^3}=\sqrt[3]{\left(0,1x\right)^3}=0,1x.\)
\(\sqrt[3]{-125a^{12}}=\sqrt[3]{\left(-5a^4\right)^3}=-5a^4\)
\(\sqrt[3]{27x^6}=\sqrt[3]{\left(3x^2\right)^3}=3x^2\)
\(\sqrt[3]{-0,343a^3}=\sqrt[3]{\left(-0,7a\right)^3}=-0,7a\)
\(\sqrt{x}+\sqrt{x+1}=\frac{1}{\sqrt{x}}\)
\(\Rightarrow\sqrt{x}\sqrt{x}+\sqrt{x+1}\sqrt{x}=\frac{1}{\sqrt{x}}\sqrt{x}\)
\(\Rightarrow\left(\sqrt{x}\right)^2+\sqrt{x}\sqrt{x+1}=1\)
\(\Rightarrow x^2+x=1-2x+x^2\)
\(\Rightarrow x=1-2x\)
\(\Rightarrow3x=1\)
\(\Rightarrow x=\frac{1}{3}\)
\(\Rightarrow S=\frac{1}{3}\)
Vậy nghiệm phương trình là \(\frac{1}{3}\)
a) \(M=\sqrt[3]{7+5\sqrt{2}}\)
Ta có:
Vì \(7+5\sqrt{2}=\left(\sqrt{2}\right)^3+1+3\sqrt{2}.1\left(\sqrt{2}+1\right)=\left(\sqrt{2}+1\right)^3\)
Nên \(M=\sqrt[3]{\left(\sqrt{2}+1\right)^3}=\sqrt{2}+1\)
b) \(N=\sqrt[3]{6\sqrt{3}-10}\)
Ta có:
Vì \(6\sqrt{3}-10=\left(\sqrt{3}\right)^3-1^3-3\sqrt{3}.1\left(\sqrt{3}-1\right)=\left(\sqrt{3}-1\right)^3\)
Nên \(N=\sqrt[3]{\left(\sqrt{3}-1\right)^3=\sqrt{3}-1}\)