Bài 3: (1 điểm) Cho A = (6n + 42)/6n với n∈Z và n ≠ 0. Tìm tất cả các số nguyên n sao cho A là số nguyên.
AI LÀM NHANH ĐÚNG MÌNH CHO 3 TICK !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đối với nhiều người, câu hỏi tưởng như vô cùng đơn giản: “Tại sao 1 + 1 = 2?”lại là một trong những câu hỏi khó trả lời nhất. Tại sao? Vì nó gần như là hiển nhiên. Bạn có 1 trái táo, sau đó có người cho bạn 1 trái nữa, thì bạn có 2 trái, tự nhiên nó đã như thế.
Chứng minh 1+1 không bằng 2
Tuy nhiên, nếu xét theo quan điểm của Toán học hiện đại, việc chứng minh “1 + 1 = 2” là thừa, vì nó không có bất kỳ một ý nghĩa nào nữa, thậm chí, người ta còn có thể chứng minh được rằng “1 + 1” không bằng 2.
Xin trình bày với các bạn một cách thức xây dựng mà ở đây “1 + 1” sẽ không bằng 2 nữa, mà bằng một cái gì đó tùy ý theo đúng quan điểm của Toán.
I*AB=> SI\(\perp\)AB
SI=\(SI=\frac{AB\sqrt{3}}{2}=\frac{a\sqrt{3}}{2}\)
\(V_{k.chop}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^2=\frac{a^3\sqrt{3}}{4}\)
b) Kẻ IK//DM(K\(\in\)AD)
Kẻ KH\(\perp\)DM(H\(\in\)DM)
=> d(I,DM)=d(K,DM0=KH
\(\Delta IAK~\Delta DCM\Rightarrow AK=\frac{1}{2}CM=\frac{a}{6}\)=> KD=5a/6
\(cos\widehat{ADM}=cos\widehat{DMC}=\frac{CM}{DM}=\frac{\frac{a}{3}}{\frac{a\sqrt{10}}{3}}=\frac{1}{\sqrt{10}}\)
=> KH=KDsin\(\widehat{ADM}\)=\(\sqrt{1-\cos\widehat{ADM}^2}=\frac{5a}{6}.\frac{3}{\sqrt{10}}=\frac{a\sqrt{10}}{4}\)
d(S,DM)=\(\sqrt{SI^2+d\left(I,DM\right)^2}=\frac{a\sqrt{22}}{4}\)
Vì \(n\inℤ\Rightarrow\hept{\begin{cases}6n+42\inℤ\\6n\inℤ\end{cases};\left(6n\ne0\right)}\)
mà \(A\inℤ\Leftrightarrow6n+42⋮6n\)
Vì \(6n⋮6n\)
\(\Rightarrow42⋮6n\)
\(\Rightarrow7⋮n\)
\(\Rightarrow n\inƯ\left(7\right)\)
\(\Rightarrow n\in\left\{1;-1;7;-7\right\}\text{thì }A\inℤ\)
Để A là số nguyên thì 42 phải chia hết cho 6n và n thuộc Z
suy ra : 6n thuộc Ư (42) = { 1,2,3,6,7,14,21,42,-1,-2,-3,-6,-7,-14,-21,-42}
suy ra : n thuộc { 1,-1,7,-7 }
Vậy n thuộc 1,-1,7,-7