K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x+2(2x-3)=4

x+4x-6=4

5x=4+6

5x=10

x=2

26 tháng 3 2020

dể thôi mà

26 tháng 3 2020

Chị xem hướng dẫn giải và đáp án bên dưới nha cj,em mới học lớp 6 à !

Hướng dẫn giải và đáp án : 

- Trước hết ta chứng minh : Nếu a \(\inℕ,\sqrt{a}\inℚ\)thì \(\sqrt{a}\inℕ\).Thật vậy

vì \(\sqrt{a}\inℚ\)nên \(\sqrt{a}=\frac{m}{n}\left(m,n\inℕ,n\ne0,\left(m,n\right)=1\right)\).Ta có : 

\(a=\frac{m^2}{n^2}\Leftrightarrow a.n^2=m^2\Rightarrow m^2⋮n^2\Rightarrow n=1\Rightarrow a=m\inℕ\)( vì (m,n) = 1 ) 

-Vận dụng kết quả trên ta lần lượt chứng minh : \(\sqrt{xy}\inℕ,\sqrt{x}\inℕ,\sqrt{y}\inℕ\)

Chứng minh : 

(1) \(\Leftrightarrow\sqrt{x}+\sqrt{y}=\sqrt{xy}-2016\Leftrightarrow x+y+2\sqrt{xy}=2016^2-2.2016\sqrt{xy}+xy\)

\(\Leftrightarrow\sqrt{xy}=\frac{2016^2+xy-x-y}{4034}\inℚ\).Đặt k = \(\sqrt{xy}\),thay vào (1) ta được : 

\(\sqrt{x}=k-2016-\sqrt{y}\Leftrightarrow x=\left(k-2016^2\right)-2.\left(k-2016\right)\sqrt{y}+y\)

\(\Leftrightarrow\sqrt{y}=\frac{\left(k-2016\right)^2+y-x}{2.\left(k-2016\right)}\inℚ\).Ta có : 

\(\sqrt{x}+\sqrt{y}+2016=\sqrt{xy}\Leftrightarrow\left(\sqrt{x}-1\right).\left(\sqrt{y}-1\right)=2017.\)Vì \(\sqrt{x}-1\inℤ,\sqrt{y}-1\inℤ\)nên \(\sqrt{x}-1,\sqrt{y}-1\)là các ước của 2017

Vì 2017 là số nguyên tố nên ta có các trường hợp : 

1)\(\hept{\begin{cases}\sqrt{x}-1=1\\\sqrt{y}-1=2017\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=2018^2\end{cases}}}\)

2) \(\hept{\begin{cases}\sqrt{x}-1=2017\\\sqrt{y}-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2018^2\\y=4\end{cases}}}\)

Vậy các cặp số nguyên (x,y ) thỏa mãn là :(20182 , 4) ; ( 4,20182).

4 tháng 9 2019

Bài này toán 8, em ấn nhầm:v

2 tháng 9 2019

\(x;y;z\rightarrow q;h;p\)

\(=\left(q^2+h^2+p^2\right)\left(q^2+h^2+p^2+2qh+2hp+2qp\right)+\left(qh+hp+pq\right)^2\)

\(Dat:\hept{\begin{cases}q^2+h^2+p^2=f\\qh+hp+qp=g\end{cases}}\Rightarrow\left(p^2+h^2+q^2\right)\left(p+q+h\right)^2+\left(qh+pq+ph\right)^2\)

\(=f\left(f+2g\right)+g^2=f^2+2fg+g^2=\left(f+g\right)^2=\left(q^2+h^2+p^2+qh+hp+pq\right)^2\)

2 tháng 9 2019

shitbo Cho đệ sửa lại bài SP chứ bài SP dài quá ạ:p

\(\left(x^2+y^2+z^2\right)\left(x+y+z\right)^2+\left(xy+yz+zx\right)^2\)

\(=\left(x^2+y^2+z^2\right)\left(x^2+y^2+z^2+2xy+yz+zx\right)+\left(xy+yz+zx\right)^2\)

Đặt \(x^2+y^2+z^2=a;xy+yz+zx=b\)

\(\Rightarrow a\left(a+2b\right)+b^2=a^2+2ab+b^2=\left(a+b\right)^2=\left(x^2+y^2+z^2+xy+yz+zx\right)^2\)

2 tháng 9 2019

Làm cho mk đi @Ender Dragon Boy Vcl

2 tháng 9 2019

(x−y+z)2+(z−y)2+2(x−y+z)(y−z)(x−y+z)2+(z−y)2+2(x−y+z)(y−z)

=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)=(x−y+z)2+(z−y)2+(x−y+z)(y−z)+(x−y+z)(y−z)

=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2+(x−y+z)(y−z)

=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)=(x−y+z)2+(x−y+z)(y−z)+(z−y)2−(x−y+z)(z−y)

=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]=(x−y+z)(x−y+y+z−z)+(z−y)[z−y−(x−y+z)]

=(x−y+z)x+(z−y)(z−y−x+y−z)=(x−y+z)x+(z−y)(z−y−x+y−z)

=x2−xy+xz+(z−y)(−x)=x2−xy+xz+(z−y)(−x)

=x2−xy+xz−xz+xy=x2−xy+xz−xz+xy

=x2

30 tháng 8 2019

Tu ke \(AH\perp BC\) Dat BH la x >0 

thi Xet tam giac AHB vuong tai H co

AH=\(\sqrt{2-x^2}\) cm   (DL PYTAGO)

=> CH = \(1+\sqrt{3}-x\) cm

Xet tam giac AHC vuong tai H co

\(AC^2=AH^2+HC^2\) Dinh Ly Pytago

<=> \(4=2-x^2+\left(1+\sqrt{3}-x\right)^2\)  

<=> \(4=2-x^2+1+3+x^2+2\sqrt{3}-2x-2\sqrt{3}x\)

<=> \(2\sqrt{3}-2\sqrt{3}x-2x+2=0\) 

<=> \(2\sqrt{3}\left(1-x\right)-2\left(1-x\right)=0\)

<=>\(\left(2\sqrt{3}-1\right)\left(1-x\right)=0\)

<=> x=1 

Suy ra \(AH=\sqrt{2-1}=1\)

cos B =\(\frac{BH}{AB}=\frac{1}{\sqrt{2}}\) => \(\widehat{B}=45^o\)

cos C=\(\frac{HC}{AC}=\frac{1+\sqrt{3}-1}{2}=\frac{\sqrt{3}}{2}=>\widehat{C}=30^o\)

Suy ra \(\widehat{A}=180^o-45^o-30^0=105^0\)

Study well

30 tháng 8 2019

Cô-si ngược dấu thôi~~

Ta có:\(\sqrt{12a+\left(b-c\right)^2}=\frac{1}{\sqrt{12}}\cdot\sqrt{12\left[12a+\left(b-c\right)^2\right]}\)

\(\le\frac{1}{\sqrt{12}}\cdot\frac{12+12a+\left(b-c\right)^2}{2}\)

Tương tự ta có:
\(K\le\frac{1}{\sqrt{12}}\left(\frac{12+12a+\left(b-c\right)^2}{2}+\frac{12+12b+\left(a-c\right)^2}{2}+\frac{12+12c+\left(a-b\right)^2}{2}\right)\)

\(=\frac{1}{\sqrt{12}}\cdot\frac{36+12\left(a+b+c\right)+2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)}{2}\)

Ta có:\(a^2+b^2+c^2\ge ab+bc+ca\) ( tự cm )

\(\Rightarrow2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\ge0\)

\(\Rightarrow K\le\frac{1}{\sqrt{12}}\cdot36=6\sqrt{3}\)

P/S:Em ko chắc đâu ạ.sợ bị ngược dấu lắm.Nhất là đoạn cuối:((( 

8 tháng 11 2019

\(\sqrt{12a+\left(b-c\right)^2}\le\sqrt{12a+\left(b+c\right)^2}=\sqrt{12a+\left(3-a\right)^2}=a+3\)

:)