K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2022

???? đừng làm thế

3 tháng 2 2022

what is this ????

17 tháng 2 2022

x y 1 1 A B C D E M

Ta thấy \(\left[BCD\right]=\left[EDC\right]=1\Rightarrow d\left(B,CD\right)=d\left(E,CD\right)\Rightarrow BE||CD\)

Tương tự \(AB||CE,AE||BD\). Gọi giao điểm của \(BD,CE\) là \(M\) thì \(ABME\) là hình bình hành

Suy ra \(\left[BME\right]=\left[BAE\right]=1\)

Ta có \(x+y=\left[CDE\right]=1;\)\(\frac{x}{y}=\frac{MC}{ME}=\sqrt{\frac{x}{\left[BME\right]}}=\sqrt{x}\)

Giải hệ \(\hept{\begin{cases}x+y=1\\\frac{x}{y}=\sqrt{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\x\left(\frac{x}{y^2}-1\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1-y\\\frac{1-y}{y^2}=1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=1-y\\y^2+y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3-\sqrt{5}}{2}\\y=\frac{-1+\sqrt{5}}{2}\end{cases}}\) (vì \(x,y>0\))

Vậy diện tích của ngũ giác đó là \(\left[ABCDE\right]=y+3=\frac{-1+\sqrt{5}}{2}+3=\frac{5+\sqrt{5}}{2}.\)

8 tháng 2 2022

llllllllllllllllllllllllllllllllll

2 tháng 2 2022

Gọi sản phẩm được giao của tổ 1, tổ 2 lần lượt là a ; b ( a ; b > 0 ) 

Theo bài ra ta có hệ pt 

\(\hept{\begin{cases}a+b=600\\\frac{9a}{50}+\frac{21b}{100}=120\end{cases}}\Leftrightarrow\hept{\begin{cases}a=200\\b=400\end{cases}}\)

Vậy tổ 1 được giao 200 sản phẩm

tổ 2 được giao 400 sản phẩm 

3 tháng 2 2022

bạn làm tắt quá

2 tháng 2 2022

c) Có \(P=\frac{ax+b}{x^2+1}=-1+\frac{x^2+ax+b+1}{x^2+1}\)

\(P=\frac{ax+b}{x^2+1}=4-\frac{4x^2-ax-b+4}{x^2+1}\)

Để Min P = 1 và Max P = 4 thì 

\(\hept{\begin{cases}x^2+ax+b+1=\left(x+c\right)^2\\4x^2-ax-b+4=\left(2x+d\right)^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\left(a-2c\right)+\left(b+1-c^2\right)=0\left(1\right)\\x\left(-a-4d\right)+\left(-b+4-d^2\right)=0\left(2\right)\end{cases}}\)

(1) = 0 khi \(\hept{\begin{cases}a=2c\\b=c^2-1\end{cases}}\)(3) 

(2) = 0 khi \(\hept{\begin{cases}a=-4d\\b=4-d^2\end{cases}}\)(4) 

Từ (3) (4) => d = 1 ; c = -2 ; b = 3 ; a = -4

Vậy \(P=\frac{-4x+3}{x^2+1}\)

3 tháng 2 2022

ĐK \(x\ge y\)

Đặt \(\sqrt{x+y}=a;\sqrt{x-y}=b\left(a;b\ge0\right)\) 

HPT <=> \(\hept{\begin{cases}a^4+b^4=82\\a-2b=1\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(2b+1\right)^4+b^4=82\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}17b^4+32b^3+24b^2+8b-81=0\\a=2b+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}17b^4-17b^3+49^3-49b^2+73b^2-73b+81b-81=0\\a=2b+1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(b-1\right)\left(17b^3+49b^2+73b+81\right)=0\left(1\right)\\a=2b+1\end{cases}}\)

Giải (1) ; kết hợp điều kiện => b = 1

=> Hệ lúc đó trở thành \(\hept{\begin{cases}b=1\\a=2b+1\end{cases}}\Leftrightarrow\hept{\begin{cases}b=1\\a=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\sqrt{x+y}=3\\\sqrt{x-y}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x+y=9\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=10\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\x-y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=4\end{cases}}\)

Vậy hệ có 1 nghiệm duy nhất (x;y) = (5;4) 

2 tháng 2 2022

Answer:

Bài 1:

a. Ta xét vế trái:

\(\frac{5+3\sqrt{5}}{\sqrt{5}}+\frac{3+\sqrt{3}}{\sqrt{3}+1}-\left(\sqrt{5}+3\right)\)

\(=\frac{\sqrt{5}\left(\sqrt{5}+3\right)}{\sqrt{5}}+\frac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}+1}-\sqrt{5}-3\)

\(=\sqrt{5}+3+\sqrt{3}-\sqrt{5}-3\)

\(=\sqrt{3}\)

b. Với \(a\ge1\)

\(P=a-\left(\frac{1}{\sqrt{a}-\sqrt{a-1}}-\frac{1}{\sqrt{a}+a-1}\right)\)

\(=a-\frac{\sqrt{a}+\sqrt{a-1}-\sqrt{a}+\sqrt{a-1}}{\left(\sqrt{a}-\sqrt{a-1}\right)\left(\sqrt{a}+\sqrt{a-1}\right)}\)

\(=a-\frac{2\sqrt{a-1}}{a-a+1}\)

\(=a-\frac{2\sqrt{a-1}}{1}\)

\(=a-2\sqrt{a-1}\)

\(=a-1-2\sqrt{a-1}+1\)

\(=\left(\sqrt{a-1}-1\right)\ge0\forall a\ge1\)

\(\Rightarrow P\ge0\)

2 tháng 2 2022

Answer:

Bài 2:

\(3x+\sqrt{2}=2\left(x+\sqrt{2}\right)\)

\(\Rightarrow3x+\sqrt{2}=2x+2\sqrt{2}\)

\(\Rightarrow3x-2x=2\sqrt{2}-\sqrt{2}\)

\(\Rightarrow x=\sqrt{2}\)

\(3\sqrt{x-2}-\sqrt{x^2-4}=0\left(ĐK:-2\le x\le2\right)\)

\(\Rightarrow3\sqrt{x-2}=\sqrt{x^2-4}\)

\(\Rightarrow9\left(x-2\right)=x^2-4\)

\(\Rightarrow9x-2-x^2+4=0\)

\(\Rightarrow-x^2+9x+2=0\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{9+\sqrt{89}}{2}\text{(Loại)}\\x=\frac{9-\sqrt{89}}{2}\end{cases}}\)