K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2020

Theo giả thiết, ta có: \(a^2b^2+b^2c^2+c^2a^2=a^2b^2c^2\Leftrightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=1\)

Áp dụng BĐT AM - GM cho 5 số, ta được: \(\hept{\begin{cases}a.a.a.b.b\le\frac{a^5+a^5+a^5+b^5+b^5}{5}=\frac{3a^5+2b^5}{5}\\b.b.b.a.a\le\frac{b^5+b^5+b^5+a^5+a^5}{5}=\frac{3b^5+2a^5}{5}\end{cases}}\)

\(\Rightarrow\frac{5\left(a^5+b^5\right)}{5}\ge a^2b^2\left(a+b\right)\)hay \(a^5+b^5\ge a^2b^2\left(a+b\right)\)

\(\Rightarrow\frac{1}{\sqrt{a^5+b^5}}\le\frac{1}{ab\sqrt{a+b}}\)(1) .

Tương tự, ta có: \(\frac{1}{\sqrt{b^5+c^5}}\le\frac{1}{bc\sqrt{b+c}}\)(2); \(\frac{1}{\sqrt{c^5+a^5}}\le\frac{1}{ca\sqrt{c+a}}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(VT=\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\)()

Xét \(\left(\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\right)^2\le\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\left(\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}\right)\)\(=\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}\Rightarrow\Sigma_{cyc}\frac{1}{ab\sqrt{a+b}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)(2)

Từ (1) và (2) suy ra \(\Sigma_{cyc}\frac{1}{\sqrt{a^5+b^5}}\le\sqrt{\Sigma_{cyc}\frac{1}{b^2\left(a+b\right)}}\)(đpcm)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{3}\)

28 tháng 2 2020

Mình nghĩ đề sai bạn ơi

##

sửa lại nhá

28 tháng 2 2020

Có : \(\left(a+b+c\right)^2=a^2+2ab+b^2+2bc+c^2+2ac\)

\(\Rightarrow2\left(ab+bc+ac\right)=\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)=3^2-7=9-7=2\)

\(\Rightarrow ab+bc+ac=\frac{2}{2}=1\)

Lại có : \(a^3+b^3+c^3=a^3+b^3+c^3-3abc+3abc=15\)

\(\Rightarrow\left(a+b+c\right)\cdot\left(a^2+b^2+c^2-ab-bc-ac\right)+3abc=15\)

\(\Rightarrow3\cdot\left[\left(a^2+b^2+c^2\right)-\left(ab+bc+ac\right)\right]+3abc=15\)

\(\Rightarrow3\cdot\left(7-1\right)+3abc=15\Rightarrow3\cdot6+3abc=15\Rightarrow18+3abc=15\)

\(\Rightarrow3abc=15-18=-3\Rightarrow abc=-1\)

Mà : \(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+b^2c^2+a^2c^2\right)\)

Đồng thời : \(a^2b^2+b^2c^2+a^2c^2=\left(ab+bc+ca\right)^2-2ab^2c-2bc^2a-2ca^2b\)

\(=1^2-2abc\left(a+b+c\right)=1-2\cdot\left(-1\right)\cdot3=1+6=7\)

\(\Rightarrow a^4+b^4+c^4=\left(7\right)^2-2\cdot7=49-14=35\)

Ta có :

2n+2017 là số chính phương lẻ => 2n+2017 chia 8 dư 1

=> 2n chia hết cho 8 => n chia hết cho 4

=> n+2019 chia ch 4 dư 3

mà số chính phương chia cho 4 dư 0,1

=> không tồn tại n

28 tháng 2 2020

2n + 2017 là số chính phương lẻ

=> 2n + 2017 chia 8 dư 1 ( do scp lẻ chia 8 dư 1)

=> 2n chia hết cho 8 => n chia hết cho 4

=> n + 2019 chia 4 dư 3

Mà scp chia 4 dư 0 hoặc 1

=> n + 2019 ko là scp

Vậy ko tồn tại STN n thoả mãn