Cho biểu thức P = \(\frac{3}{x+3}\)+\(\frac{1}{x-3}\)-\(\frac{18}{9-x^2}\)
a)Tìm điều kiện xác định của P
b)Rút gọn P
c)Tìm x để P = 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) B xác định\(\Leftrightarrow\hept{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}}\Rightarrow x\ne\pm1\)
b) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Mà x khác 1 nên x = 0
\(B=\frac{x-1}{x+1}-\frac{x+1}{x-1}-\frac{4}{1-x^2}\)
\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}+\frac{4}{x^2-1}\)
\(=\frac{x^2-2x+1-x^2-2x-1}{\left(x+1\right)\left(x-1\right)}+\frac{4}{x^2-1}\)
\(=\frac{-4x}{\left(x+1\right)\left(x-1\right)}+\frac{4}{\left(x+1\right)\left(x-1\right)}\)
\(=\frac{-4x+4}{\left(x+1\right)\left(x-1\right)}=\frac{-4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{-4}{x+1}\)
Thay x = 0 vào B, ta được \(P=\frac{-4}{0+1}=-4\)
Vậy P = -4 khi \(x^2-x=0\)
c) \(B=-3\Leftrightarrow\frac{-4}{x+1}=-3\Leftrightarrow x+1=\frac{4}{3}\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy B = -3 khi \(x=\frac{1}{3}\)
d) \(B< 0\Leftrightarrow\frac{-4}{x+1}< 0\Leftrightarrow x+1>0\Leftrightarrow x>-1\)
Vậy x > - 1 thì B < 0
tích cho cậu là ấn vào link hay là thích
\(A=\frac{1}{2}x^4+x^2y^2+\frac{1}{2}y^4-2x^2y^2\)
\(=\frac{1}{2}\left(x^4-2x^2y^2+y^4\right)=\frac{1}{2}\left(x^2-y^2\right)^2=\frac{1}{2}.4^2=8\)
\(5+4x-x+2=\left(5+4x\right)\left(7+5x\right)\)
\(7+3x=35+25x+28x+20x^2\)
\(7+3x=35+53x+20x^2\)
\(7+3x-35-53x-20x^2=0\)
\(-28-50x-20x^2=0\)
\(x=-\frac{25+\sqrt{65}}{20};-\frac{25-\sqrt{65}}{20}\)
Tìm số tự nhiên nhỏ nhất n>1 sao cho
A=12+22+32+...n2 là 1 số chính phương
giúp mk vs sắp phải nộp rồi
Mình làm như thế này không biết đúng không:
x2=5+2yx2=5+2y
Xét x chẵn pt vô nghiệm
Xét x lẻ ⇒x=2k+1⇒x=2k+1 ; (kϵZ)(kϵZ)
4k2+4k+1=5+2y4k2+4k+1=5+2y
⇔4k2+4k−2y=4⇔4k2+4k−2y=4
⇔⇔2k2+2k−y=22k2+2k−y=2
Suy ra y chẵn trái với giả thiết
Do đó pt trên không có nghiệm nguyên
Mình làm như thế này không biết đúng không:
x2=5+2yx2=5+2y
Xét x chẵn pt vô nghiệm
Xét x lẻ ⇒x=2k+1⇒x=2k+1 ; (kϵZ)(kϵZ)
4k2+4k+1=5+2y4k2+4k+1=5+2y
⇔4k2+4k−2y=4⇔4k2+4k−2y=4
⇔⇔2k2+2k−y=2v
Không mất tính tổng quát giả sử \(a\ge b\ge c>0\Rightarrow\hept{\begin{cases}b+c\le a+c\le a+b\\\frac{a^a}{b+c}\ge\frac{b^a}{c+a}\ge\frac{c^a}{a+b}\end{cases}}\)
Sử dụng bất đẳng thức Chebyshev cho 2 dãy đơn ngược chiều ta có:
\(VT\left(1\right)=\frac{1}{2\left(a+b+c\right)}\left(\frac{a^a}{b+c}+\frac{b^a}{c+a}+\frac{c^a}{a+b}\right)\left[\left(b+c\right)+\left(c+a\right)+\left(a+b\right)\right]\ge\)
\(\frac{1}{2\left(a+b+c\right)}\cdot3\left[\frac{a^a}{b+c}\left(b+c\right)+\frac{b^a}{c+a}\left(c+a\right)+\frac{c^a}{a+b}\left(a+b\right)\right]=\frac{3\left(a^a+b^a+c^a\right)}{2\left(a+b+c\right)}\)\(=\frac{3}{2}\cdot\frac{a^a+b^a+c^a}{a+b+c}\)
=> đpcm
+) Nếu x,y cùng chẵn thì Q chẵn
Lúc đó P.Q chẵn
+) Nếu x chẵn, y lẻ thì 5x + y + 1 chẵn nên P.Q chẵn
+) Nếu x lẻ, y chẵn thì 5x + y + 1 chẵn nên P.Q chẵn
Nếu m,n cùng chẵn
⇒ Q chẵn
⇒ P.Qchẵn
Nếu m,ncùng lẽ
⇒ Q chẵn
⇒ P.Q chẵn
Nếu m,n có tính chẵn lẻ khác nhau
⇒ P chẵn
⇒ P.Q chẵn
\(5+4x-x+2=\left(5x+4\right)\left(7+5x\right)\)
\(\Leftrightarrow5+4x-x+2=35+28x+25x+20x^2\)
\(\Leftrightarrow x^2+50x+28=0\)
Ta có \(\Delta=50^2-4.1.28=2388,\sqrt{\Delta}=2\sqrt{597}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-50+2\sqrt{597}}{2}=-25+\sqrt{597}\\x=\frac{-50-2\sqrt{597}}{2}=-25-\sqrt{597}\end{cases}}\)
\(5+4x-x+2=\left(5+4x\right)\left(7+5x\right)\)
\(7+3x=\left(5+4x\right)\left(7+5x\right)\)
\(7+3x=35+28x+25x+20x^2\)
\(7+3x-35-28x-25x-20x^2=0\)
\(-28-50x-20x^2=0\)
\(-28-50x-20x^2=0\)
\(x=-\frac{25+\sqrt{65}}{20};-\frac{25-\sqrt{65}}{20}\)
(x-3).(2x-1)=(2x-1).(2x+3)
<=> (x-3).(2x-1)-(2x-1).(2x+3)=0
<=> (x-3-2x-3)(2x-1)=0
<=> (-3x-6)(2x-1)=0
<=> -3x-6=0 hoặc 2x-1=0
<=> -3x=6 hoặc 2x=1
<=> x=-2 hoặc x=1/2
Vậy \(x\in\left\{-2;\frac{1}{2}\right\}\)
(x - 3)(2x - 1) = (2x - 1)(2x + 3)
<=> (x - 3)(2x - 1) - (2x - 1)(2x + 3) = 0
<=> (2x - 1)(x - 3 - 2x - 3) = 0
<=> (2x - 1)(-x - 6) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\-x-6=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-6\end{cases}}\)
Vậy S = {1/2; -6}
Help me :<<<<<<<<<<<<<<<<<<<<
a) ĐKXĐ: x \(\ne\pm3\)
b) = \(\frac{3\left(x-3\right)+x+3+18}{\left(x-3\right)\left(x+3\right)}\)
= \(\frac{4x+12}{\left(x-3\right)\left(x+3\right)}\)= \(\frac{4\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{4}{x-3}\)
c) P = 4 hay \(\frac{4}{x-3}=4\)=> x - 3 = 1 <=> x = 4 (TM)
Vậy ...