K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giải thích the ý hiểu thôi nhé

ta có thể chắc chắn rằng \(O,Q,N\) THẲNG HÀNG VÀ \(O,M,P\)THẲNG HÀNG

VÀ DO \(OM\perp AB;OP\perp CD\),2 ĐOẠN THẲNG  \(AB\) VÀ \(DC\) SONG SONG VỚI NHAU NÊN \(MP\) LÚC NÀY SẼ LÀ KHOẢNG CÁCH CỦA 2 ĐOẠN THẲNG  \(AB\) VÀ \(DC\) ,MP KO ĐỔI(DO CẠNH HÌNH VUÔNG ABCD KO ĐỔI),VÌ THẾ NẾU O NẰM TRONG HÌNH VUÔNG ABCD THÌ OP+OM=MP SẼ KO ĐỔI,CÒN NẾU O NẰM NGOÀI THÌ LÚC NÀY O SẼ KO CÒN  NẰM TRÊN ĐOẠN THẲNG MP nên lúc này \(OM+OP\ne MP\),NHƯ VẬY TA ĐÃ CM ĐC NẾU O NẰM TRONG HÌNH VUÔNG ABCD THÌ OM+OP KO ĐỔI(1)

CM TƯƠNG TỰ THÌ TA CÓ OQ+ON KO ĐỔI(2)(KHI MÀ O NẰM TRONG HÌNH VUÔNG ABCD)

TỪ 1 VÀ 2  \(\Rightarrow\) KHI O nằm TRONG HÌNH VUÔNG ABCD THÌ \(OM+ON+OP+OQ\) KO ĐỔI(ĐPCM)

COI QUÂN XE LÀ ĐIỂM O THÌ DO QUÂN XE CHỈ ĐI NGANG DỌC NÊN NÓ CŨNG ĐỊNH RA TRÊN BÀN CỜ NHỮNG ĐOẠN THẲNG VUÔNG GÓC NHÉ,CM TƯƠNG TỰ TRÊN LÀ ĐC

19 tháng 2 2022

Có thể giải thích như thế này:

Ta có \(S_{OAB}=\frac{1}{2}OM.AB=\frac{1}{2}a.OM\)\(S_{OBC}=\frac{1}{2}ON.BC=\frac{1}{2}a.ON\)\(S_{OCD}=\frac{1}{2}OP.CD=\frac{1}{2}a.OP\)\(S_{ODA}=\frac{1}{2}OQ.AD=\frac{1}{2}a.OQ\)

Từ đó ta có: \(S_{ABCD}=S_{OAB}+S_{OBC}+S_{OCD}+S_{OAD}=\frac{1}{2}a\left(OM+ON+OP+OQ\right)\)

Vì hình vuông ABCD cố định nên \(S_{ABCD}\)không đổi và \(a\)không đổi, từ đó dẫn đến \(OM+ON+OP+OQ\)không đổi.

(*) Cũng coi quân xe là điểm O và giải thích tương tự.

19 tháng 2 2022

TL

=5.149354281x10^12

nha

HT

19 tháng 2 2022

Ta có:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}=\frac{a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2\right)\left(ab+bc+ca\right)}\)

\(\ge\frac{4a\left(b+c\right)\left(ab+bc+ca\right)}{\left(b^2+bc+c^2+ab+bc+ca\right)}=\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}\)

Hoàn toàn tương tự, ta được:

\(\frac{a\left(b+c\right)}{b^2+bc+c^2}+\frac{b\left(c+a\right)}{c^2+ca+a^2}+\frac{c\left(a+b\right)}{a^2+ab+b^2}\)

\(\ge\frac{4a\left(ab+bc+ca\right)}{\left(b+c\right)\left(a+b+c\right)^2}+\frac{4b\left(ab+bc+ca\right)}{\left(c+a\right)\left(a+b+c\right)^2}+\frac{4c\left(ab+bc+ca\right)}{\left(a+b\right)\left(a+b+c\right)^2}\)

Ta viết lại bất đẳng thức trên thành:

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)

Đánh giá trên đúng theo bất đẳng thức Bunhiacopxki dạng phân thức. Vậy bất đẳng thức được chứng minh

19 tháng 2 2022

Ta có : \(2\sqrt{x}+2\ge2\Rightarrow A\le\frac{6}{2}=3\)

Dấu ''='' xảy ra khi x = 0 

19 tháng 2 2022

Với \(x\ge-1\Rightarrow x+1\ge0\Leftrightarrow-2\sqrt{x+1}\le0\Leftrightarrow A\le6\)

Dấu ''='' xảy ra khi x = -1 

19 tháng 2 2022

\(A=\left|2020-2x\right|+\left|2x-2019\right|+2\ge\left|2020-2x+2x-2019\right|+2=3\)

Dấu ''='' xảy ra khi \(\left(2020-2x\right)\left(2x-2019\right)\ge0\)

18 tháng 2 2022

Xét (O) có ^BDC = ^BEC = 900 ( góc nt chắng nửa đường tròn ) 

Xét tam giác ABC có CD là đường cao 

BE là đường cao 

CD giao BE = H => AH là đường cao thứ 3 

=> AH vuông BC 

18 tháng 2 2022

 

Ta có

\(\widehat{BDC}=90^o\)(góc nội tiếp chắn nửa đường tròn) \(\Rightarrow CD\perp AB\)

\(\widehat{BEC}=90^o\)(góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BE\perp AC\)

=> H là trực tâm của tg ABC => AH là đường cao của tg ABC\(\Rightarrow AH\perp BC\)