K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 12 2020

1. Định nghĩa đường trung trực của một đoạn thẳng

Đường thẳng đi qua trung điểm của đoạn thẳng và vuông góc với đoạn thẳng gọi là đường trung trực của đoạn thẳng ấy.

Định lí 1:

Điểm nằm trên đường trung trực của một đoạn thẳng thì cách đều hai mút của đoạn thẳng đó

Định lí 2:

Điểm cách đều hai đầu mút của một đoạn thẳng thì nằm trên đường trung trực của đoạn thẳng đó

27 tháng 12 2020

Ta có :\(\frac{a}{b}=\frac{b}{c}\)

=> \(\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{b}.\frac{a}{b}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{b}.\frac{b}{c}=\frac{a^2+b^2}{b^2+c^2}\)

=> \(\frac{a}{c}=\frac{a^2+b^2}{b^2+c^2}\left(\text{đpcm}\right)\)

27 tháng 12 2020

Cho xem đáp án nhé

25 tháng 12 2020

   Tự kẻ hình nhé!                                                                                                                                   

a) Xét tam giác ABD và tam giác ACD ta có:

    \(\hept{\begin{cases}AB=AC\left(gt\right)\\DB=DC\left(gt\right)\\AD\left(chung\right)\end{cases}}\)

=> tam giác ABD= tam giác ACD (c-c-c)

b) Xét tam giác AEB và tam giác CEB ta có:

\(\hept{\begin{cases}EA=EC\left(gt\right)\\\widehat{AEM=\widehat{CEB\left(đđ\right)}}\\EB=EM\left(gt\right)\end{cases}}\)

=> tam giác AEB =tam giác CEB (c-g-c)

=> AM = BC ( 2 cạnh tương ứng)

 Mà BC = 2BD (gt)

=> AM = 2BD (đpcm)

c) Vì tam giác AEB = tam giác CEB (cmt)

=> \(\widehat{MAE}\)=   \(\widehat{ECB}\)( 2 góc tương ứng)

  Mà 2 góc này nằm ở vị trí so le trong

=> AM // BC (dhnb)       (1)

   Vì AB =  AC (gt) => tam giác ABC cân tại A (định nghĩa)

         Mà AD là đường trung tuyến tam giác ABC ( D là trung điểm của BC)

=> AD đồng thời là đường cao (tính chất)

=> AD vuông góc BC tại D        (2)

         Từ (1) và (2)  => AM vuông góc AD tại A (mối quan hệ từ vuông góc đến //)

                               => \(\widehat{MAD}\)=   \(_{^{ }90^0}\)(đpcm)

Chúc em hok tốt!!!!!

25 tháng 12 2020

Sửa đề \(\frac{2x-4y}{3}=\frac{4z-3x}{2}=\frac{3y-2z}{4}\)

=> \(\frac{6x-12y}{9}=\frac{8z-6x}{4}=\frac{12y-8z}{16}=\frac{6x-12y+8z-6x+12y-8z}{9+4+16}=\frac{0}{29}=0\)

=> \(\hept{\begin{cases}2x-4y=0\\4z-3x=0\\3y-2z=0\end{cases}}\Rightarrow\hept{\begin{cases}2x=4y\\4z=3x\\3y=2z\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{4}=\frac{y}{2}\\\frac{x}{4}=\frac{z}{3}\\\frac{z}{3}=\frac{y}{2}\end{cases}}\Rightarrow\frac{x}{4}=\frac{y}{2}=\frac{z}{3}\)

=> \(\frac{2x}{8}=\frac{y}{2}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau 

\(\frac{x}{4}=\frac{2x}{8}=\frac{y}{2}=\frac{z}{3}=\frac{2x-y+z}{8-2+3}=\frac{27}{9}=3\)

=> x = 12 ; y = 6 ; z = 9 

Vậy x = 12 ; y = 6 ; z = 9 là giá trị cần tìm

25 tháng 12 2020

Do x và y là 2 đại lượng tỉ lệ nghịch với nhau nên :

a = x1.y1 = x2.y2 = 2.36 = 3.24 = 72

Ta có : x = a/y

=> x = 72/y