K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

\(\hept{\begin{cases}x^2-2x\sqrt{y}+2y=x\\y^2-2y\sqrt{z}+2z=y\\z^2-2z\sqrt{x}+2x=z\end{cases}}\)

\(\Leftrightarrow x^2-2x\sqrt{y}+2y+y^2-2y\sqrt{z}+2z+z^2-2z\sqrt{x}+2x=x+y+z\)

\(\Leftrightarrow\left(x-\sqrt{y}\right)^2+\left(y-\sqrt{z}\right)^2+\left(z-\sqrt{x}\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}x-\sqrt{y}=0\\y-\sqrt{z}=0\\z-\sqrt{x}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\sqrt{y}\\y=\sqrt{z}\\z=\sqrt{x}\end{cases}}}\)

\(\Rightarrow\orbr{\begin{cases}x=y=z=0\\x=y=z=1\end{cases}}\)

1 tháng 3 2020

Hệ phương trình

\(\Leftrightarrow\hept{\begin{cases}\left(x-3\right)^3=0\\\left(y-3\right)^3=0\\\left(z-3\right)^3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=3\\z=3\end{cases}}}\)

1 tháng 3 2020

\(hpt=>\hept{\begin{cases}x^3+y^3-9y^2+27y-27=y^3.\\y^3+z^3-9z^2-27x-27=z^3.\\z^3+x^3-9y^2-27y-27=x^3.\end{cases}}\)

\(=>\hept{\begin{cases}x^3=y^3-\left(y-3\right)^3\\y^3=z^3-\left(z-3\right)^3\\z^3=x^3-\left(x-3\right)^3\end{cases}}\)

Do vai trong của x, y , z như nhau nên ta giả sử x=max{x,y,z}

Do giả sử ta có 

\(=>\hept{\begin{cases}x^3\ge z^3\\-\left(y-3\right)^3\ge\left(x-y\right)^3\end{cases}}\)

=>\(\hept{\begin{cases}y^3-\left(y-3\right)^3\ge x^3-\left(x-3\right)^3\\-\left(y-3\right)^3\ge-\left(x-3\right)^3\end{cases}}\)

=>\(y^3\ge x^3=>y\ge x\)

Từ đây , ta suy ra x=y=z

Thay zô 1 pt bất kì tao tìm được x=y=z=3

Vậy nghiệm duy nhất của hệ phương trình là x=y=z=3

1 tháng 3 2020

I don't know how to do exercise

1 tháng 3 2020

\(\hept{\begin{cases}x+y-z=7\\x^2+y^2-z^2=37\\x^3+y^3-z^3=1\end{cases}}\)<=> \(\hept{\begin{cases}x+y=7+z\\x^2+y^2=37+z^2\\x^3+y^3=1+z^3\end{cases}}\)

Ta có: \(x^2+y^2=37+z^2\)

<=> \(\left(x+y\right)^2-2xy=37+z^2\)

<=> \(2xy=\left(7+z\right)^2-37-z^2\)

<=> \(xy=6+7z\)

Ta có: \(x^3+y^3=1+z^3\)

<=> \(\left(x+y\right)\left(x^2+y^2-xy\right)=1+z^3\)

<=> \(\left(7+z\right)\left(37+z^2-6-7z\right)=1+z^3\)đây là phương trình bậc 2. Em giải ra tìm z => x; y

1 tháng 3 2020

Từ phương trình của 2 hệ ta suy ra x,y >=0. Xét phương trình

\(x^3+y^3+7\left(x+y\right)xy=8xy\sqrt{2\left(x^2+y^2\right)}\)

\(x^3+xy+y^3+7\left(x+y\right)=\left(x+y\right)\left(x^2+y^2+6xy\right)=\left(x+y\right)\left[\left(x+y\right)^2+4xy\right]\)

Theo bất đằng thức Cô Si ta có:

\(\left(x+y\right)^2+4xy\ge2\sqrt{\left(x+y\right)^2\cdot4xy}\). Ta có:

\(\left(x+y\right)^2=\left(x^2+y^2\right)+2xy\ge2\sqrt{\left(x^2+y^2\right)\cdot2xy}\)

\(\Rightarrow x^3+y^3+7\left(x+y\right)xy\ge8xy\sqrt{2\left(x^2+y^2\right)}\)

Dấu "=" xảy ra khi và chỉ khi x=y

Thay vào phương trình (2) ta thu được

\(\sqrt{x}-\sqrt{2x-3}-6=6-2x\)

\(\Leftrightarrow\sqrt{2x-3}-\sqrt{x}=2\left(x-3\right)\)

\(\Leftrightarrow\frac{x-3}{\sqrt{2x-3}+\sqrt{x}}=2\left(x-3\right)\)

\(\Rightarrow\orbr{\begin{cases}x=3\\\sqrt{2x-3}+\sqrt{x}=\frac{1}{2}\end{cases}}\)

Do \(x\ge\frac{3}{2}\)nên phương trình vô nghiệm

Hệ phương trình có nghiệm x=y=3

29 tháng 2 2020

ĐK: \(x\le2\)

pt <=> \(2=2-x+\sqrt{2-x}\sqrt{3-x}+\sqrt{3-x}\sqrt{5-x}+\sqrt{5-x}\sqrt{2-x}.\)

<=> \(2=\sqrt{2-x}\left(\sqrt{2-x}+\sqrt{3-x}\right)+\sqrt{5-x}\left(\sqrt{2-x}+\sqrt{3-x}\right).\)

<=> \(2=\left(\sqrt{2-x}+\sqrt{3-x}\right)\left(\sqrt{5-x}+\sqrt{2-x}\right).\)

<=> \(2\left(\sqrt{5-x}-\sqrt{2-x}\right)=3\left(\sqrt{2-x}+\sqrt{3-x}\right)\)( vì \(\sqrt{5-x}-\sqrt{2-x}\ne0;\forall x\inℝ\))

<=> \(2\sqrt{5-x}=5\sqrt{2-x}+3\sqrt{3-x}\)

<=> \(4\left(5-x\right)=25\left(2-x\right)+9\left(3-x\right)+30\sqrt{\left(2-x\right)\left(3-x\right)}\)

<=> \(-57+30x=30\sqrt{\left(2-x\right)\left(3-x\right)}\)

<=> \(\hept{\begin{cases}30x-57\ge0\\900x^2-3420x+3249=900x^2-4500x+5400\end{cases}}\)

<=> \(\hept{\begin{cases}x\ge\frac{57}{30}\\x=\frac{239}{120}\end{cases}}\Leftrightarrow x=\frac{239}{120}\)tmđk

28 tháng 2 2020

mik cũng thắc mắc giống bạn đó

Câu hỏi của Nguyễn Cảnh Kyf - Toán lớp 9 - Học toán với OnlineMath

27 tháng 2 2020

                     giải

    tổng còn lại là: 

         1462-102=1360

   số nhỏ là:

         1360:(3+1)x1=340

   số lớn là:

         1360:(3+1)x3+102=1122

                 Đ/S: 340   ;    1122

28 tháng 2 2020

Gọi số nhỏ là x  ( x > 102 ; x là số tự nhiên )

Số lớn chia số nhỏ được thương là 3 và và số dư là 102 nên số lớn là: 3x + 102

Theo bài ra tổng của hai số là 1462 nên ta có phương trình:

x + 3x + 102 = 1462 

<=> 4x = 1360

<=> x=340 

Số lớn là: 1122

Vậy:...