\(1+\frac{2x}{x+4}+\frac{27}{2x^2+7x-4}=\frac{6}{2x-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi O gia điểm DM và AB, O' gia điểm EM và AC (mk quên lấy trong hình mất nên bạn lấy hộ mình nhé )
a) Vì M trung điểm BC Nên AM=MA=MC \(\Rightarrow\Delta BMA\)và \(\Delta AMC\)cân tại M.
Vì \(\Delta BMA\)cân tại M nên \(\widehat{MBA}=\widehat{MAB}\)Mặt khác \(\widehat{DAB}=90^0-\widehat{MAB};\widehat{DBA}=90^0-\widehat{MBA}\)Nên \(\widehat{DAB}=\widehat{DBA}\Rightarrow\Delta BDA\)cân tại D \(\Rightarrow DB=DA\).Tương tự \(AE=EC\)
Từ đó ta được \(\Delta DBM=\Delta DAM\left(c.g.c\right)\Rightarrow\widehat{BDM}=\widehat{ADM}\)nên DO phân giác tam giác BDA. Mà BDA là tam giác cân nên DO vuông góc với BA hay \(\widehat{MOA}=90^0\)
Tương tự \(\widehat{MO'A}=90^0\)
Nên \(\widehat{DME}=90^0\)hay tam giác DME vuông tại M
Tam giác DMA đồng dạng tam giác MEA nên AE/MA = MA/DA hay CE/MA=MA/BD Suy ra \(BD\cdot CE=AM^2=\left(\frac{1}{2}\cdot BC\right)^2=\frac{1}{4}BC^2\left(ĐPCM\right)\)
b) Vì BD//CE nên theo ta-lét BD/CE=DI/IC Suy ra DA/AE=DI/IC => AI//EC nên AI vuông góc BC
~ Chúc bạn học tốt ~
c) Gọi H là giao điểm của AI và BC. Đường thẳng qua B song song HE cắt đường thẳng qua C song song HD tại P. Chứng minh D, P, E thẳng hàng. Giúp mik với
nC=\(\frac{3}{12}\)=0.4
C+02 -->CO2
0.4-->0.4----->0.4 mol
\(n_{oxidư}\)=\(\frac{16.8}{22.4}\)-0.4=0.35
\(n_p=\)\(\frac{16.8}{31}\)=0.54
4P+502 -->2 P2O5
0.28<--0.35 mol
\(n_{pdư}=\)0.54-0.28=0.26
\(m_{pdu}\)=0.26*31=8.06
Hình như đề bài sai bạn ơi
đốt cháy hết cacbon dư oxi
đốt cháy dư photpho thì pu hết oxi
sao mà dư được chất răn x và khí y được
a,đổi.672ml=0,672l
tổng.số.mol.O2.cần.dùng.là:n=V/22,4=0,672/22,4=0,03(mol)
(1)3Fe+2O2--->Fe3O4
(2)2Mg+O2--->2MgO
số.mol.Mg.dùng.trong.PƯ.là:n=m/M=0,48/24=0,02(mol)
theo.PT(.2,)số.mol.O2.cần.dùng.để.tham.gia.PƯ.là:0,02x1:2=0,01(mol)
=>số.mol.O2.dùng.cho.PƯ.(1).là:0,03-0,01=0,02(mol)
theo.PT.(1),số.mol.Fe.là:0,02x3:2=0,03(mol)
Khối.lượng.sắt.là:0,03x56=1,68(g)
khối.lượng.hỗn.hợp.ban.đầu.là.:0,48+1,68=2,16(g)
\(x^2-x+y^2+y+\frac{1}{2}=0\)
\(\Leftrightarrow x^2-x+y^2+y+\frac{1}{4}+\frac{1}{4}=0\)
\(\Leftrightarrow\left(x^2-x+\frac{1}{4}\right)+\left(y^2+y+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\left(y+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{-1}{2}\end{cases}}\)
Gọi số tiền phải tra cho loại hàng thứ nhất; loại hàng thứ 2 không tính thuế lần lượt là x; y ( x; y > 0; triệu đồng )
Ta có: tổng số tiền phải trả không tính thuế là: 3,875 - 0,375 = 3 ( triệu đồng )
=> x + y = 3 (1)
Tiền thuế cho loại hàng thứ nhất là: 0,09x ( triệu đồng )
Tiền thuế cho loại hàng thứ hai là: 0,12 y ( triệu đồng )
=> 0,09 x + 0,12 y = 0,375 (2)
Từ (1); (2) giải hệ ta được: x = 1,5 và y =2 (tm)
Kết luận.
x = 3 là nghiệm của phương trình, ta có:
3^3 - 3^2 - 9.3 - 9m = 0
<=> 27 - 9 - 27 - 9m = 0
<=> -9 - 9m = 0
<=> -9m = 0 + 9
<=> -9m = 9
<=> m = -1
a) x4 + 4 = (x4 + 4x2 + 4) - 4x2 = (x2 + 2)2 - 4x2 = (x2 + 2x + 2)(x2 - 2x + 2)
b) (x + 2)(x + 3)(x + 4)(x + 5) - 24 = (x + 2)(x + 5)(x + 3)(x + 4) - 24
= (x2 + 7x + 10)(x2 + 7x + 12) - 24
Đặt x2 + 7x + 10 = y => y(y + 2) - 24 = y2 + 2y - 24
= y2 + 6y - 4y - 24 = (y - 4)(y + 6) = (x2 + 7x + 10 - 4)(x2 + 7x + 10 + 6)
= (x2 + 7x + 6)(x2 + 7x + 16) = (x2 + x + 6x + 6)(x2 + 7x + 16) = (x + 1)(x + 6)(x2 + 7x + 16)
Ta có: \(n^3-n=\left(n-1\right)n\left(n+1\right)\) chia hết cho 3 ; và chia hết cho 2
=> \(n^3-n⋮6\)
=> \(B=n^3+6n^2-19n-24=\left(n^3-n\right)+6n^2-18n-24⋮6\)
Ta có:B=n3+6n2-19n-24
<=> B=n3-n+6n2-18n-24
<=> B=n(n2-1)+6(n2-3n-4)
<=> B=n(n-1)(n+1)+6(n2-3n-4)
Vì n(n-1)(n+1) là tích 3 số tự nhiên liên tiếp => n(n-1)(n+1) chia hết cho 6
và 6(n2-3n-4) chia hết cho 6
=> B chia hết cho 6 (đpcm)
\(1+\frac{2x}{x+4}+\frac{27}{2x^2+7x-4}=\frac{6}{2x-1}\left(x\ne-4;x\ne\frac{1}{2}\right)\)
\(\Leftrightarrow1+\frac{2x}{x+4}+\frac{27}{\left(x+4\right)\left(2x-1\right)}-\frac{6}{2x-1}=0\)
\(\Leftrightarrow\frac{2x^2+7x-4}{\left(x+4\right)\left(2x-1\right)}+\frac{2x\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{27}{\left(x+4\right)\left(2x-1\right)}-\frac{6\left(x+4\right)}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{2x^2+7x-4}{\left(x+4\right)\left(2x-1\right)}+\frac{4x^2-2x}{\left(x+4\right)\left(2x-1\right)}+\frac{27}{\left(x+4\right)\left(2x-1\right)}-\frac{6x+24}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{2x^2+7x-4+4x^2-2x+27-6x-24}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{6x^2-x-1}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow6x^2-x-1=0\)
\(\Leftrightarrow6x^2+2x-3x-1=0\)
<=> 2x(3x+1)-(3x+1)=0
<=> (3x+1)(2x-1)=0
\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\left(tm\right)\\x=\frac{1}{2}\left(ktm\right)\end{cases}}}\)
Vậy pt có nghiệm \(x=\frac{-1}{3}\)
\(ĐKXĐ:x\ne-4;x\ne\frac{1}{2}\)
\(1+\frac{2x}{x+4}+\frac{27}{2x^2+7x-4}=\frac{6}{2x-1}\)
\(\Leftrightarrow\frac{\left(x+4\right)\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{2x\left(2x-1\right)}{\left(x+4\right)\left(2x-1\right)}+\frac{27}{\left(x+4\right)\left(2x-1\right)}-\frac{6\left(x+4\right)}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow\frac{2x^2+7x-4+4x^2-2x+27-6x-24}{\left(x+4\right)\left(2x-1\right)}=0\)
\(\Leftrightarrow6x^2-x-1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x+1\right)=0\)
\(\Leftrightarrow x=-\frac{1}{3}\)