K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2020

Ta có : AB=3AN

mà AN =2

=>AB= 3.2=6

=>AB=6

Ta còn có : AM = 1/2 AB

Vì M là trung điểm AB

=> AM=1/2.6

=>AM=3

6 tháng 4 2020

Bạn kia sai rồi. Đề có cho M là trung điểm của AB đâu, chỉ cho M nằm giữa A và B thôi.

9 tháng 4 2020
(3x+5)-(2x-1)=4x-2
15 tháng 4 2020

Hơi khó nên tui dung tạm BĐT vậy , bạn thông cảm ^ ^

A B C H E F H

\(S\left(ABC\right)=AD.\frac{BC}{2}\)

\(S\left(BHC\right)=HD.\frac{BC}{2}\)

 \(\Rightarrow\frac{HD}{AD}=\frac{S\left(BHC\right)}{S\left(ABC\right)}\left(1\right)\)

Tương tự:

\(\frac{HE}{BE}=\frac{S\left(AHC\right)}{S\left(ABC\right)}\left(2\right)\)

\(\frac{HF}{CF}=\frac{S\left(AHB\right)}{S\left(ABC\right)}\left(3\right)\)

(1) + (2) +(3) được:

\(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=\left[S\left(BHC\right)+S\left(AHC\right)+\frac{S\left(AHB\right)}{S\left(ABC\right)}\right]=\frac{S\left(ABC\right)}{S\left(ABC\right)}=1\)

Áp dụng bất đẳng thức:  \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge9\)9 ta có:

 \(\left(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}\right)\left(\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}\right)\ge9\)

mà: \(\frac{HD}{AD}+\frac{HE}{BE}+\frac{HF}{CF}=1\) \(\Rightarrow\left(\frac{AD}{HD}+\frac{BE}{HE}+\frac{CF}{HF}\right)\ge9\)

Bạn tham khảo ở link này nha :

https://h.vn/hoi-dap/question/246529.html

~~ Hok tốt ~~

Bài giải này cùng link : https://h.vn/hoi-dap/question/246529.html   nên bạn tham khảo nhé 

 Trả lời:

Xét trường hợp n⋮(n−1)n⋮(n−1), dễ tìm được n=2, thỏa mãn.

- Với n không chia hết cho n-1, ta có:

Nếu n là số nguyên tố, dễ thấy (n−2)!(n−2)! không chia hết cho nn , thỏa mãn.

Nếu n là hợp số, (n−2)!(n−2)! chia hết cho n2n2 khi n có ít nhất 4 ước trong đoạn [2,n−2][2,n−2]  (suy ra trực tiếp từ chính chất nếu d là ước của n thì {\frac{n}{d}} cũng là ước của n), khi đó, n sẽ có ít nhất 6 ước (thêm 1 và n).

Do đó, trong trường hợp này, (n−2)!(n−2)! không chia hết cho n2n2 khi n có ít hơn 6 ước.

Kết hợp lại, ta được đáp án : n là các số có ít hơn 6 ước.

5 tháng 4 2020

Vì P(x) có hệ số bậc cao nhất là 1

Nên P(x) có thể được viết dưới dạng: \(P\left(x\right)=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)

Và \(P\left(-1\right)=\left(-1\right)^5-5\left(-1\right)^3+4\left(-1\right)+1=1\)

\(P\left(\frac{1}{2}\right)=\frac{77}{32}\)

Ta có: \(Q\left(x\right)=2x^2+x-1=2x^2+2x-x-1=2x\left(x+1\right)-\left(x+1\right)=\left(x+1\right)\left(2x-1\right)\)

=> \(Q\left(x_1\right).\text{​​}\text{​​}Q\left(x_2\right).\text{​​}\text{​​}Q\left(x_3\right).\text{​​}\text{​​}Q\left(x_4\right).\text{​​}\text{​​}Q\left(x_5\right)\text{​​}\text{​​}\)

\(=\left(x_1+1\right)\left(2x_1-1\right)\left(x_2+1\right)\left(2x_2-1\right)\left(x_3+1\right)\left(2x_3-1\right)\left(x_4+1\right)\left(2x_4-1\right)\left(x_5+1\right)\left(2x_5-1\right)\)

\(=32\left(-1-x_1\right)\left(\frac{1}{2}-x_1\right)\left(-1-x_2\right)\left(\frac{1}{2}-x_2\right)\left(-1-x_3\right)\left(\frac{1}{2}-x_3\right)\left(-1-x_4\right)\left(\frac{1}{2}-x_4\right)\left(-1-x_5\right)\left(\frac{1}{2}-x_5\right)\)\(=32.P\left(-1\right).P\left(\frac{1}{2}\right)=32.1.\frac{77}{32}=77\)

7 tháng 4 2020

\(p\left(x\right)=x^5-5x^3+4x+1=\left(x-x_1\right)\left(x-x_2\right)\left(x-x_3\right)\left(x-x_4\right)\left(x-x_5\right)\)

\(Q\left(x\right)=2\left(\frac{1}{2}-x\right)\left(-1-x\right)\)

Do đó \(Q\left(x_1\right)\cdot Q\left(x_2\right)\cdot Q\left(x_3\right)\cdot Q\left(x_4\right)\cdot Q\left(x_5\right)\)

\(=2^5\left[\left(\frac{1}{2}-x_1\right)\left(\frac{1}{2}-x_2\right)\left(\frac{1}{2}-x_3\right)\left(\frac{1}{2}-x_4\right)\left(\frac{1}{2}-x_5\right)\right]\)

\(=\left(-1-x_1\right)\left(-1-x_2\right)\left(-1-x_3\right)\left(-1-x_4\right)\left(-1-x_5\right)\)

\(=32P\left(\frac{1}{2}\right)\cdot\left[P\left(-1\right)\right]\)

\(=32\cdot\left(\frac{1}{32}-\frac{5}{8}+\frac{4}{2}+1\right)\left(-1+5-4+1\right)\)

\(=4300\)

*Mình không chắc*