Xác định a,b để đồ thị hàm số y=ax+b đi qua 2 điểm A( 2;-4) B(-1;5)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )
Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)
\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )
Thay \(x=1\) vào hệ (1) ta có :
\(\sqrt{2}-\sqrt{3y}=1\)
\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)
\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )
P/s : E chưa học cái này nên không chắc lắm ...
\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)
Hệ đẳng cấp. Xét 2 TH: x = 0 và x khác 0.
+) Th1: x = 0 ---> không thỏa mãn
+) Th2: x khác 0
Đặt: y = ax; z = bx ( a; b > 0)
ta có hệ mới:
\(\hept{\begin{cases}x^2\left(a^2+b^2\right)=50\\x^2\left(1+a+\frac{a^2}{2}\right)=169\\x^2\left(1+b+\frac{b^2}{2}\right)=144\end{cases}}\)
<=> \(\hept{\begin{cases}\frac{a^2+b^2}{1+a+\frac{a^2}{2}}=\frac{50}{169}\\\frac{1+a+\frac{a^2}{2}}{1+b+\frac{b^2}{2}}=\frac{169}{144}\end{cases}}\) <=> \(\hept{\begin{cases}144a^2-50a-50+169b^2=0\\144a^2+288a-50-169b^2-338b=0\end{cases}}\)
Lấy vế dưới trừ vế trên ta có:
\(338a-338b^2-338b=0\) <=> \(a=b^2+b\) Thế vào 1 trong 2 phương trình ta có:
\(144\left(b^2+b\right)^2-50\left(b^2+b\right)-50+169b^2=0\)
<=> \(144b^4+288b^3+263b^2-50b-50=0\)
<=> \(\left(144b^4-25b^2\right)+\left(288b^3-50b\right)+\left(288b-50\right)=0\)
<=> \(\left(144b^2-25\right)\left(b^2+2b+2\right)=0\)
<=> \(144b^2-25=0\)
<=> \(b=\pm\frac{5}{12}\)
+) Với \(b=\frac{5}{12}\)ta có: \(a=\frac{85}{144}\)
Do đó: \(x^2\left[\left(\frac{5}{12}\right)^2+\left(\frac{85}{144}\right)^2\right]=50\)
<=> \(x^2=\frac{41472}{433}\)
=> \(K=xy+yz+zx=ax^2+bx^2+abx^2=x^2\left(a+b+ab\right)\) Em thay vào tính
+) Tương tự với b = -5/12
\(\hept{\begin{cases}\left(m-1\right)x-y=2\\mx+y=m\end{cases}}\) ( \(m\ne0;m\ne1\))
\(\Leftrightarrow\hept{\begin{cases}mx-x-y=2\\mx=m-y\end{cases}\Leftrightarrow\hept{\begin{cases}m-2y-x=2\\y=m-mx\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=m-m\left(m-2y-2\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=3m-m^2+2my\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=m-2y-2\\y=\frac{3m-m^2}{1-2m}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{-m-2}{1-2m}\\y=\frac{3m-m^2}{1-2m}\end{cases}}\)
Theo bài ra ta có : 2x + y < 0 \(\Leftrightarrow\frac{2\left(-m-2\right)}{1-2m}+\frac{3m-m^2}{1-2m}< 0\)
\(\Leftrightarrow\frac{-m^2+m-4}{1-2m}< 0\Leftrightarrow\frac{-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}}{1-2m}< 0\)
Ta có : \(-\left(m-\frac{1}{2}\right)^2-\frac{15}{4}< 0\)\(\Rightarrow1-2m< 0\Rightarrow m>\frac{1}{2}\)
Vậy \(m>\frac{1}{2}\left(m\ne1\right)\)
Gọi x là số xe của đội là a
Nếu toàn bộ xe mỗi xe phải chở \(\frac{120}{a}\)(tấn hàng)
Mà khi chuyên chở phải chở:\(\frac{120}{\left(a-2\right)}\) (tấn hàng)
Theo đề bài ta có
Khi chuyển chở đi nơi khác mỗi xe phải chở 16 tấn hàng nên ta lập PT sau:
\(\frac{120}{a}+16=\frac{120}{\left(a-2\right)}\)
giải PT sau ta được a=5 (xe)
Gọi số chiếc áo xí nghệp 1 làm xong 1 ngày là x (chiếc)
số chiếc áo xí nghệp 2 làm xong 1 ngày là y (chiếc)
ĐK: \(0< x;y,x;y\in N\)
Vì Xí nghiệp 1 may trong 5 ngày và xí nghiệp 2 may trong 3 ngày thì cả hai xí nghiệp may được 2620 chiếc áo nên ta có phương trình:
5x+3y=2620(1)
Vì trong 1 ngày xí nghiệp 2 may nhiều hơn xí nghiệp là 20 chiếc áo nên ta có phương trình:
y-x=20(2)
Từ (1) và (2) ta có hpt:\(\hept{\begin{cases}y-x=20\\5x+3y=2620\end{cases}\Leftrightarrow\hept{\begin{cases}x=320\\y=340\end{cases}}}\)(TMĐK)
Vậy số áo xí nghệp 1 làm xong 1 ngày là 320 chiếc
số áo xí nghệp 2 làm xong 1 ngày là 340 chiếc
Gọi số áo mà 2 xí nghiệp may trong một ngày lần lượt là x,y (cái x,y thuộc N*,x>20,x>y)
Ta có: Số áo mà xí nghiệp 1 may trong 5 ngày là:5x
Số áo mà xí nghiệp 2 may trong 3 ngày là:3y
Theo đề bài ta có HPT:
\(\hept{\begin{cases}x-y=-2\\5x+3y=2620\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1307}{4}\Rightarrow x=327\\y=\frac{1315}{4}\Rightarrow y=329\end{cases}}\left(cái\right)\)
Vậy
xí nghiệp 1 may được 327 cái áo mỗi ngày
xí nghiệp 2: 329 cái áo mỗi ngày
\(\hept{\begin{cases}\left(m+2\right)x+2y=5\\mx-y=1\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m+2\right)x+2y=5\left(1\right)\\2mx-2y=2\left(2\right)\end{cases}}}\)
Lấy (1) +(2) có:
\(\left(m+2\right)x+2mx=7\)
\(\Leftrightarrow\left(m+2+2m\right)x=7\)
\(\Leftrightarrow\left(3m+2\right)x=7\)
\(\Leftrightarrow x=\frac{7}{3m+2}\)
Để hệ có nghiệm nguyên duy nhất thì 3m+2 \(\ne\)0 <=> m\(\ne\frac{-2}{3}\)
\(m\inℤ\Rightarrow3m+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
ta có bảng
3m+2 | -7 | -1 | 1 | 7 |
m | \(\frac{-1}{3}\) | -1 | \(\frac{5}{3}\) | -3 |
Vì m\(\in\)Z => m=-1; m=-3