K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

ĐK: x\(\ge0\)

Đặt \(A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

Đặt \(t=\sqrt{x}\)( t >=0)

Có: \(A=\frac{t}{t^2+t+1}\)

<=> \(At^2+\left(A-1\right)t+A=0\)(1)

TH1: A =0 => t =0

TH2: A khác 0.

(1) có nghiệm <=> \(\Delta\ge0\Leftrightarrow\left(A-1\right)^2-4A^2\ge0\Leftrightarrow-3A^2-2A+1\ge0\Leftrightarrow-1\le A\le\frac{1}{3}\)

Do đó: A min = -1 thay vào tìm x

           A max = 1/3 thay vào tìm x .

Kết luận....

15 tháng 10 2019

áp dụng bct cosy \(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}.\frac{yz}{x}}=2y;\)\(\frac{yz}{x}+\frac{xz}{y}\ge2z;\frac{xy}{z}+\frac{xz}{y}\ge2x\)

=> 2A \(\ge2\left(x+y+z\right)=2=>A\ge1\)

Min A =1 khi x=y=z= 1/3

15 tháng 10 2019

dk x+y\(\ne0\)

hệ <=> \(\hept{\begin{cases}\left(x+y\right)\left(3x^3-y^3\right)=1\\x^2+y^2=1\end{cases}< =>\hept{\begin{cases}3x^4+3x^3y-xy^3-y^4=1\\x^2+y^2=1\end{cases}}< =>}\)

\(\hept{\begin{cases}2x^4+x^4-y^4+4x^3y-x^3y-xy^3=x^2+y^2\\x^2+y^2=1\end{cases}}\)<=> \(\hept{\begin{cases}2x^4+\left(x^2-y^2\right)\left(x^2+y^2\right)+4x^3y-xy\left(x^2+y^2\right)=x^2+y^2\\x^2+y^2=1\end{cases}}\)<=> \(\hept{\begin{cases}2x^4+x^2-y^2-xy+4x^3y=x^2+y^2\\x^2+y^2=1\end{cases}}\)<=> \(\hept{\begin{cases}2x^4+4x^3y-xy-2y^2=0\\x^2+y^2=1\end{cases}< =>\hept{\begin{cases}\left(x+2y\right)\left(2x^3-y\right)=0\\x^2+y^2=1\end{cases}}}\)

giải từng hệ \(\begin{cases}x+2y=0\\x^2+y^2=1\end{cases}< =>\hept{\begin{cases}x=\frac{-2}{\sqrt{5}}\\y=\frac{1}{\sqrt{5}}\end{cases};\hept{\begin{cases}x=\frac{2}{\sqrt{5}}\\y=\frac{-1}{\sqrt{5}}\end{cases}}}\)(thỏa mãn x+y khác 0)

\(\hept{\begin{cases}2x^3-y=0\\x^2+y^2=1\end{cases}< =>\hept{\begin{cases}y=2x^3\\x^2+4x^6-1=0\end{cases}}}\)<=> \(\hept{\begin{cases}y=2x^3\\\left(x^2-\frac{1}{2}\right)\left(4x^4+2x^2+2\right)=0\end{cases}< =>\hept{\begin{cases}y=2x^3\\x^2=\frac{1}{2}\end{cases}< =>}}\)\(\hept{\begin{cases}x=\frac{1}{\sqrt{2}}\\y=\frac{1}{\sqrt{2}}\end{cases};\hept{\begin{cases}x=\frac{-1}{\sqrt{2}}\\y=\frac{-1}{\sqrt{2}}\end{cases}}}\)( thỏa mãn x+y khác 0)

14 tháng 10 2019

A=\(\sqrt[3]{1+3\sqrt{3}+3.1\left(\sqrt{3}\right)^2+3\sqrt{3}}-5\sqrt{3}\)

A= \(\sqrt[3]{\left(1+\sqrt{3}\right)^3}-5\sqrt{3}\)

A= \(1+\sqrt{3}-5\sqrt{3}=1-4\sqrt{3}\)

Chuc ban hoc tot !!!

15 tháng 10 2019

nhưng bạn ơi, bạn làm cách nào để ra được kết quả như thế, hay là bạn đoán hoặc dự cảm thế thôi

15 tháng 10 2019

Đề bài là có vô số dâu căn nên ta có thể giải như sau:

\(\sqrt{x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}}=x\)

\(\Leftrightarrow x+2\sqrt{x+...+2\sqrt{x+2\sqrt{3x}}}=x^2\)

\(\Leftrightarrow x+2x=x^2\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)