cho x và y là hai số hỏa mãn : \(\left(x-\sqrt{x^2+5}\right)\left(y-\sqrt{y^2+5}\right)=5\)
hãy tính giá trị của biểu thức \(M=x^{2017}+y^{2017}\)
MONG MN SẼ GIÚP ĐỠ Ạ
Càng nhanh càng tốt mình đang cần lắm , hứa sẽ tick đầy đủ ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(xy+2x+2y=1\)
\(\Leftrightarrow x\left(y+2\right)+2\left(y+2\right)=5\)
\(\Leftrightarrow\left(x+2\right)\left(y+2\right)=5=1.5=5.1=\left(-1\right).\left(-5\right)\)
\(=\left(-5\right).\left(-1\right)\)
Lập bảng:
\(x+2\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+2\) | \(5\) | \(1\) | \(-5\) | \(-1\) |
\(x\) | \(-1\) | \(3\) | \(-3\) | \(-7\) |
\(y\) | \(3\) | \(-1\) | \(-7\) | \(-3\) |
a3+b3 =(a+b)(a2+b2 -ab) \(\ge\left(a+b\right)\left(2ab-ab\right)=a^2b+ab^2;\)
tương tự a3 +c3 \(\ge a^2c+ac^2;b^3+c^3\ge b^2c+bc^2\)
cộng 3 bdt với nhau ta được 2(a3 +b3+c3) \(\ge a^2\left(b+c\right)+b^2\left(a+c\right)+c^2\left(a+b\right)\)(chứng minh xong)
dấu '=' khi a=b=c
đặt AB=x
dễ chứng tam giác HBA và tam giác ABC đồng dạng => AB2 =BH.BC <=> x2 = 4BH => BH= \(\frac{x^2}{4}\)
pytago cho tam giác HAB : AB2= BH2+ AH2 => AH2 = x2- \(\frac{x^4}{16}\)=> AH = \(\frac{x}{4}\sqrt{16-x^2}\)
SAIHK = HI.HK \(\le\frac{HI^2+HK^2}{2}=\frac{AH^2}{2}\)= \(\frac{x^2\left(16-x^2\right)}{32}\)
áp dụng ab\(\le\frac{\left(a+b\right)^2}{4}\)=> \(x^2\left(16-x^2\right)\le\frac{\left(x^2+16-x^2\right)^2}{4}=\frac{16^2}{4}\)
=> SAIHK \(\le\frac{16^2}{4.32}=2\)
Đạt được khi HI=HK và x2=16-x2 => x=AB= 2\(\sqrt{2}\)
HI=HK => ABC vuông cân ở A
\(\sqrt{3x^2+6x+7}\) +\(\sqrt{5x^2+10x+14}\)=4-2x-\(x^2\)
2x^2+3x+\(\sqrt{2x^2+3x+9}\)=33
MN giúp e vs
Ta có \(\sqrt{3x^2+6x+7}=\sqrt{3\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Dấu"=" xảy ra khi x=-1
Tương tự \(\sqrt{5x^2+10x+14}=\sqrt{5\left(x+1\right)^2+9}\ge\sqrt{9}=3\)
Dấu"=" xảy ra khi x=-1
\(\Rightarrow4-2x-x^2\ge5\)
\(\Rightarrow-\left(x+1\right)^2+5\ge5\)
\(\Rightarrow\left(x+1\right)^2\le0\)
mà \(\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)^2=0\Rightarrow x=-1\)(tm)
Vậy....................
Nhân cả 2 vế với \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)ta được 25=5\(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)
<=> \(\left(x+\sqrt{x^2+5}\right)\left(y+\sqrt{y^2+5}\right)\)= 5 = \(\left(x-\sqrt{x^2+5}\right)\left(y-\sqrt{y^2+5}\right)\)
khai triển và rút gọn ta được \(x\sqrt{y^2+5}=-y\sqrt{x^2+5}\)
Nếu x=y=0 => M=0
xét x;y khác 0
\(\frac{\sqrt{x^2+5}}{\sqrt{y^2+5}}=\frac{-x}{y}\left(\frac{x}{y}< 0\right)\)<=>\(\frac{x^2+5}{y^2+5}=\frac{x^2}{y^2}=\frac{x^2+5-x^2}{y^2+5-y^2}=1=>\frac{x^2}{y^2}=1=>\frac{x}{y}=-1\left(\frac{x}{y}< 0\right).\)
hay x=-y => M= (-y)2017 +y2017 =0
vậy M=0