cho hàm số:
y = mx + 1 (1) (m là tham số)
a) Tìm m để đổ thị hàm số (1) đi qua A(1 ; 4) với giá trị m vừa tìm được hàm số (1) đồng biến hay nghịch biến
b) Tìm m để đô thị hàm số (1) // (d) y = m^2 x X + m + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+5x+1=(x+5)\(\sqrt{x^2+1}\)
\(\Leftrightarrow x^2+5x+1=\left(x+5\right)\left(x+1\right)\)
\(\Leftrightarrow x^2+5x+1=x^2+x+5x+5\)
<=> -x=4
<=> x=-4
Gọi M, N, P lần lượt là tiếp điểm của (I;r) với AB; BC; AC
Có: \(AB+AC-BC=AM+MB-BN-NC+CP+PA\)
Mà \(MB=BN\); \(NC=CP\); \(AM=PA\)
=> \(AB+AC-BC=2AM\)
Xét tứ giác MIPA có 3 góc vuông => MIPA là hình chữ nhật
=> \(AM=IP=r\)
=> \(r=AM=\frac{AB+AC-BC}{2}\)
a)\(A=^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\)
=> \(A^3=\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)^3\)
\(=20+14\sqrt{2}+20-14\sqrt{2}\)
\(+3\left(\text{}^3\sqrt{20+14\sqrt{2}}+^3\sqrt{20-14\sqrt{2}}\right)\left(^3\sqrt{20+14\sqrt{2}}.^3\sqrt{20-14\sqrt{2}}\right)\)
\(=40+3A.^3\sqrt{\left(20+14\sqrt{2}\right)\left(20+14\sqrt{2}\right)}\)
\(\Rightarrow A^3=40+3.A.2\)
=> \(A^3-6A-40=0\)
<=> \(A^3-16A+10A-40=0\)
<=> \(A\left(A-4\right)\left(A+4\right)+10\left(A-4\right)=0\)
<=> \(\left(A-4\right)\left(A^2+4A+10\right)=0\)
<=> A = 4 ( vì \(A^2+4A+10=\left(A+2\right)^2+6>0\))
Vậy A = 4.
b/ \(B=^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\)
=> \(B^3=\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right)^3\)
\(=26+15\sqrt{3}-26+15\sqrt{3}\)
\(-3\left(^3\sqrt{26+15\sqrt{3}}-^3\sqrt{26-15\sqrt{3}}\right).^3\sqrt{26+15\sqrt{3}}.^3\sqrt{26-15\sqrt{3}}\)
\(=30\sqrt{3}-3B.1\)
=> \(B^3+3B-30\sqrt{3}=0\)
<=> \(B^3-12B+15B-30\sqrt{3}=0\)
<=> \(B\left(B-2\sqrt{3}\right)\left(B+2\sqrt{3}\right)+15\left(B-2\sqrt{3}\right)=0\)
<=> \(\left(B-2\sqrt{3}\right)\left(B^2+2\sqrt{3}B+15\right)=0\)
<=> \(B-2\sqrt{3}=0\)( vì \(B^2+2\sqrt{3}B+15=\left(B+\sqrt{3}\right)^2+12>0\))
<=> \(B=2\sqrt{3}\)
\(\left(x+y\right)^2=\left(x+1\right)\left(y-1\right)\)
\(\Leftrightarrow x^2+2xy+y^2=xy-x+y-1\)
\(\Leftrightarrow x^2+xy+y^2+x-y+1=0\)
\(\Leftrightarrow2\left(x^2+xy+y^2+x-y+1\right)=0\)
\(\Leftrightarrow2x^2+2xy+2y^2+2x-2y+2=0\)
\(\Leftrightarrow\left(x^2+2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)
\(\Leftrightarrow\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Vậy x = -1 ; y = 1