Bài 1: Tìm cặp số (x;y) thỏa mãn x2 + 2y2+ 2xy - 6x - 8y + 10 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét VT -VP = a^2 + b^2 +c^2 -ab -bc -ca
= 1/2 ( 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ac )
=1/2 ( a^2 -2ab - b^2 ) (b^2 - 2bc + c^2 ) ( a^2 -2ac + c^2 )
=1/2 {( a - b )^2 ( b - c )^2 ( a - c )^2}
Vì 1/2 > 0
Và {( a - b )^2 ( b - c )^2 ( a - c )^2} >0
Thì 1/2 {( a - b )^2 ( b - c )^2 ( a - c )^2} > 0
=> a^2 + b^2 +c^2 > ab + bc +ca
Lời giải:
Giả sử tổ dự định làm $a$ sản phẩm mỗi ngày trong 18 ngày
Số sản phẩm dự kiến: $18a$ (sp)
Số sản phẩm thực tế: $(a+5).16$ (sp)
Theo bài ra: $(a+5).16=18a+20$
$\Leftrightarrow 16a+90=18a+20$
$\Leftrightarrow a=30$ (sp)
Số sản phẩm dự kiến sản xuất: $18a=18.30=540$ (sản phẩm)
\(\dfrac{3x+1}{2018}+\dfrac{3x+2}{2017}=\dfrac{3x+3}{2016}+\dfrac{3x+4}{2015}\)
\(\Leftrightarrow\left(\dfrac{3x+1}{2018}+1\right)+\left(\dfrac{3x+2}{2017}+1\right)=\left(\dfrac{3x+3}{2016}+1\right)+\left(\dfrac{3x+4}{2015}+1\right)\)
\(\Leftrightarrow\dfrac{3x+2019}{2018}+\dfrac{3x+2019}{2017}-\dfrac{3x+2019}{2016}-\dfrac{3x+2019}{2015}=0\)
\(\Leftrightarrow\left(3x+2019\right)\left(\dfrac{1}{2018}+\dfrac{1}{2017}-\dfrac{1}{2016}-\dfrac{1}{2015}\right)=0\)
Mà \(\dfrac{1}{2018}+\dfrac{1}{2017}-\dfrac{1}{2016}-\dfrac{1}{2015}< 0\)
\(\Rightarrow-\left(3x+2019\right)=0\Leftrightarrow x=-673\)
Ta có: \(1=a^2+b^2+c^2\ge ab+bc+ca\).
\(P=\dfrac{a^3}{b+2c}+\dfrac{b^3}{c+2a}+\dfrac{c^3}{a+2b}=\dfrac{a^4}{ab+2ca}+\dfrac{b^4}{bc+2ab}+\dfrac{c^4}{ca+2bc}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{3\left(ab+bc+ca\right)}=\dfrac{1}{3\left(ab+bc+ca\right)}\ge\dfrac{1}{3}\)
Dấu \(=\) xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\).
Thể tích của bể là: 25 x 15 x 22 = 8250 (cm3)
Đổi: 1L = 1 dm3; 8250 cm3 = 8,25 dm3
Thể tích của nước là: 1 x 7 = 7 (L)
Vì 7 < 8,25 nên khi cho 7 lít nước vào thì vẫn chưa đấy bể.
Lời giải:
$x^2+2y^2+2xy-6x-8y+10=0$
$\Leftrightarrow (x^2+2xy+y^2)-6x-8y+y^2+10=0$
$\Leftrightarrow (x+y)^2-6(x+y)+9+(y^2-2y+1)=0$
$\Leftrightarrow (x+y-3)^2+(y-1)^2=0$
Do $(x+y-3)^2\geq 0; (y-1)^2\geq 0$ với mọi $x,y\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì $(x+y-3)^2=(y-1)^2=0$
$\Leftrightarrow y=1; x=2$