biết x+y=1
tính x^3 + y^3 + 3xy bằng 3 cách
giúp vs mk sẽ k 3 bn đầu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{x+1}+\frac{x+1}{4}\geq 1$
$\frac{1}{y+1}+\frac{y+1}{4}\geq 1$
$\frac{1}{1+z}+\frac{1+z}{4}\geq 1$
Cộng theo vế:
$A+\frac{x+y+z+3}{4}\geq 3$
$\Rightarrow A\geq 3-\frac{x+y+z+3}{4}\geq 3-\frac{3+3}{4}=\frac{3}{2}$
Vậy $A_{\min}=\frac{3}{2}$ khi $x=y=z=1$
Dự đoán điểm rơi \(x=y=z=1\)
Khi đó \(\dfrac{1}{1+x}=\dfrac{1}{1+1}=\dfrac{1}{2}\) và \(1+x=1+1=2\)
Ta cần ghép Cô-si \(\dfrac{1}{1+x}\) với \(k\left(1+x\right)\) sao cho đảm bảo đấu "=" xảy ra khi \(x=1\)
Đồng thời khi Cô-si 2 số dương trên thì dấu "=" xảy ra khi \(\dfrac{1}{1+x}=k\left(1+x\right)\Leftrightarrow\dfrac{1}{2}=k.2\Leftrightarrow k=\dfrac{1}{4}\)
Như vậy, áp dụng BĐT Cô-si cho 2 số dương \(\dfrac{1}{1+x}\) và \(\dfrac{1+x}{4}\), ta có \(\dfrac{1}{1+x}+\dfrac{1+x}{4}\ge2\sqrt{\dfrac{1}{1+x}.\dfrac{1+x}{4}}=1\)
Tương tự, ta có \(\dfrac{1}{1+y}+\dfrac{1+y}{4}\ge1\) và \(\dfrac{1}{1+z}+\dfrac{1+z}{4}\ge1\)
Cộng vế theo vế của các BĐT vừa tìm được, ta có \(A+\dfrac{x+y+z+3}{4}\ge3\)\(\Leftrightarrow A\ge3-\dfrac{x+y+z+3}{4}\)
Lại có \(x+y+z\le3\) nên \(A\ge3-\dfrac{x+y+z+3}{4}\Leftrightarrow A\ge3-\dfrac{3+3}{4}=\dfrac{3}{2}\)
Vậy GTNN của A là \(\dfrac{3}{2}\) khi \(x=y=z=1\)
a/ Xét tg vuông ABC có
BM=CM (gt) => AM=BM=CM=BC/2 (trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)
=> tg ABM cân tại M => \(\widehat{BAM}=\widehat{ABM}\) (góc ở đáy tg cân)
b/ Xét tg vuông AEF và tg vuông AFM có
\(\widehat{AEF}=\widehat{FAM}\) (cùng phụ với \(\widehat{AFE}\) ) (1)
Mà AM=CM (cmt) => tg MAC cân tại M => \(\widehat{FAM}=\widehat{ACB}\) (góc ở đáy th cân) (2)
Từ (1) và (2) \(\Rightarrow\widehat{ACB}=\widehat{AEF}\)
Xét tg MBE và tg MFC có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
\(\widehat{BME}=\widehat{CMF}\) (góc đối đỉnh)
=> tg MBE đồng dạng với tg MFC (g.g.g)
c/ Xét tg vuông ABC và tg vuông AFE có
\(\widehat{AEF}=\widehat{ACB}\) (cmt)
=> tg ABC đông dạng với tg AFE
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\Rightarrow AB.AE=AC.AF\)
d/
(Tự vẽ hình) Sửa đề: Phân giác của góc BCD cắt BD tại I
b) Do \(CI\) là phân giác nên ta có: \(\dfrac{IB}{ID}=\dfrac{BC}{CD}\)
Mặt khác: \(\Delta AHB\sim\Delta BCD\) (câu a)
\(\Rightarrow\dfrac{BC}{CD}=\dfrac{AH}{HB}\Rightarrow\dfrac{IB}{ID}=\dfrac{AH}{HB}\Rightarrow IB.HB=ID.AH\)
a/ Xét 2 tg vuông BDE và tg vuông DCE có
\(\widehat{DEB}\) chung
\(\widehat{DBE}=\widehat{CDE}\) (cùng phụ với \(\widehat{DEB}\) )
=> tg BDE đồng dạng với tg DCE (g.g.g)
b/ Xét tg vuông DCE có
\(DC^2=DH.DE\) (trong tg vuông bình phương 1 cạnh góc vuông bằng tích giữa hình chiếu của cạnh góc vuông đó trên cạnh huyền với cạnh huyền)
Xét tg vuông DHC và tg vuông BDE có
\(\widehat{DCH}=\widehat{DEB}\) (cùng phụ với \(\widehat{CDE}\) )
=> tg DHC đồng dạng với tg BDE
\(\Rightarrow\dfrac{DH}{DB}=\dfrac{CH}{DE}\Rightarrow DH.DE=CH.DB\)
\(\Rightarrow DC^2=CH.DB\)
c/
Ta có
\(BD\perp DE;CH\perp DE\) => CH//BD (cùng vuông góc với DE)
\(\Rightarrow\dfrac{KH}{OD}=\dfrac{KC}{OB}\) (talet) \(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}\)
Mà OD=OB (trong HCN hai đường chéo cắt nhau tại trung điểm mỗi đường)
\(\Rightarrow\dfrac{KH}{KC}=\dfrac{OD}{OB}=1\Rightarrow KH=KC\) => K là trung điểm của HC
Xét tg vuông BCD có
\(DB=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10cm\)
Ta có
\(DC^2=CH.DB\Rightarrow CH=\dfrac{DC^2}{DB}=\dfrac{8^2}{10}=6,4cm\)
\(\dfrac{S_{EHC}}{S_{EDB}}=\dfrac{\dfrac{EH.CH}{2}}{\dfrac{ED.DB}{2}}=\dfrac{EH.CH}{ED.DB}=k\)
Ta có
CH//DB (cmt)\(\Rightarrow\dfrac{EH}{ED}=\dfrac{CH}{DB}\)
\(\Rightarrow k=\left(\dfrac{CH}{DB}\right)^2=\left(\dfrac{6,4}{10}\right)^2=\left(\dfrac{4}{5}\right)^4\)
C1 : x3+y3+3xy=(x+y)(x2-xy+y2)+3xy=x2+y2+2xy=(x+y)2=1
C2 : x3+y3+3xy=x3+y3+3xy(x+y)-3xy(x+y)+3xy
=(x+y)3+3xy[1-(x+y)]=1+3xy(1-1)=1+0=1
Mình mới nghĩ ra 2 cách đó thôi à :v
thanks bn nhiều!!!