Đề 1:
Câu 5.
Trên mặt phẳng cho n điểm ( n \(\ge\)3), trong đó không có 3 điểm nào thẳng hàng. Chứng minh rằng tồn tại một đường tròn đi qua 3 điểm trong số các điểm đã cho mà không chứa trong nó điểm nào thuộc tập các điểm còn lại.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: H là trung điểm của BC
nên HB=HC=2,5(cm)
⇔AH=5√152(cm)
⇔AH=5152(cm)
S=5√152⋅52=25√154(cm2)
S=5152⋅52=25154(cm2)
b: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//BC
Xét tứ giác BMNC có MN//BC
nên BMNC là hình thang
mà ˆB=ˆCB^=C^
nên BMNC là hình thang cân
Thu gọn
Từ giả thiết : \(abc=b+2c\)
\(\Leftrightarrow\frac{b+2c}{bc}=a\)
\(\Leftrightarrow\frac{1}{c}+\frac{2}{b}=a\)(1)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Ta có : \(P=\frac{3}{b+c-a}+\frac{4}{c+a-b}+\frac{5}{a+b-c}\)
\(=\frac{1}{b+c-a}+\frac{1}{c+a-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)
\(\ge\frac{4}{2c}+2\cdot\frac{4}{2b}+3\cdot\frac{4}{2a}=\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)
Áp dụng (1) vào \(P\): \(\frac{2}{c}+\frac{4}{b}+\frac{6}{c}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)
Vậy \(Min_P=4\sqrt{3}\Leftrightarrow a=b=c=\sqrt{3}\)
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y},x>0,y>0\)
\(P=\frac{1}{b+c-a}+\frac{1}{a+c-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)
\(\Rightarrow P\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)
Từ giả thiết ta có: \(\frac{1}{c}+\frac{2}{b}=a\) nên \(\frac{2}{c}+\frac{4}{b}+\frac{6}{a}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)
Vậy giá trị nhỏ nhất của P=\(4\sqrt{3}\) đạt được khi \(a=b=c=\sqrt{3}\)
Bạn kia làm sai r
Ta có đánh giá quen thuộc \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
mà \(3abc\left(a+b+c\right)\le\left(ab+bc+ca\right)^2\)
do đó \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\)
Phép chứng minh hoàn tất khi ta cm được
\(\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)
hay \(3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)
Theo bđt AM-GM ta có
\(\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\)
\(\ge3\sqrt[3]{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}\)
hay \(\left(a+b+c\right)^6\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)
mà a+b+c=3 nên \(\left(a+b+c\right)^6=81\left(a+b+c\right)^2\)
\(\Rightarrow3\left(a+b+c\right)^2\ge\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)
Vậy bđt được chứng minh
Dấu "=" xảy ra khi a=b=c=1
Xét BĐT phụ \(\frac{1}{a^2}+4a\ge a^2+4\Leftrightarrow\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}\ge0\)
Đến đây, ta đưa điều phải chứng minh về dạng \(\frac{\left(a-1\right)^2\left(1+2a-a^2\right)}{a^2}+\frac{\left(b-1\right)^2\left(1+2b-b^2\right)}{b^2}+\frac{\left(c-1\right)^2\left(1+2c-c^2\right)}{c^2}\ge0\)(*)
Không mất tính tổng quát, giả sử \(a\ge b\ge c\)
Xét hai trường hợp:
Trường hợp 1: \(a\le1+\sqrt{2}\Rightarrow c\le b\le a\le1+\sqrt{2}\)
Khi đó thì \(1+2a-a^2\ge0;1+2b-b^2\ge0;1+2c-c^2\ge0\)dẫn đến (*) đúng
Trường hợp 2: \(a>1+\sqrt{2}\Rightarrow b+c=3-a< 3-\left(1+\sqrt{2}\right)=2-\sqrt{2}< \frac{2}{3}\)
\(\Rightarrow bc\le\frac{\left(b+c\right)^2}{4}< \frac{\frac{4}{9}}{4}=\frac{1}{9}\)
Mà a,b,c dương nên \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}>\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}>18>\left(a+b+c\right)^2>a^2+b^2+c^2\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c = 1
\(n+1⋮\left(\sqrt{n}-1\right)\)
\(\left(n-1+2\right)⋮\left(\sqrt{n}-1\right)\)
\(2⋮\left(\sqrt{n}-1\right)\)
suy ra n=9
Theo đề bài, ta có:
\(k^2=160...081\)
Để \(k^2\) có chữ số tận cùng là 1 như đề bài cho thì \(k\) phải có chữ số tận cùng là 1(1) hoặc 9(2).
Áp dụng phép đặt tính với (1) và (2) ta tìm được \(k=...009\)
Lại có : \(k^2=160...081=160...000+81\in\left\{4000^2+81,40000^2+81,400000^2+81,...\right\}\)
\(\left\{4000^2+81,40000^2+81,400000^2+81,...\right\}< \left\{5000^2,50000^2,500000^2,...\right\}\Rightarrow k\in\left\{4009,40009,400009,...\right\}\)
Thử lại : \(4009^2=16072081\) (đúng)
\(40009^2=1600720081\) (đúng)
\(...\)
Vậy có tồn tại số \(k\) nguyên dương (\(k\in\left\{4009,40009,400009,...\right\}\)) để \(160...081\) là số chính phương.
Bài làm:
Ta có: \(\hept{\begin{cases}x^2+y^2+xy+1=4y\\y\left(x+y\right)^2=2x^2+7y+2\end{cases}}\)\(\left(1\right)\)\(\Leftrightarrow\hept{\begin{cases}2x^2+2=8y-2y^2-2xy\\y\left(x+y\right)^2=2x^2+2+7y\end{cases}\Leftrightarrow\hept{\begin{cases}2\left(x^2+1\right)=8y-2y^2-2xy\\y\left(x+y\right)^2=2\left(x^2+1\right)+7y\end{cases}}}\)
\(\Rightarrow y\left(x+y\right)^2=-2y^2-2xy+15y\)
\(\Leftrightarrow y\left(x+y\right)^2+2y^2+2xy-15y=0\)
\(\Leftrightarrow y\left[\left(x+y\right)^2+2\left(x+y\right)-15\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=0\\\left(x+y\right)^2+2\left(x+y\right)-15=0\end{cases}}\)
+ Nếu \(y=0\), thay vào phần trên của HPT \(\left(1\right)\), ta được: \(x^2+1=0\)
Mà \(x^2+1\ge1>0\left(\forall x\right)\)
=> Mâu thuẫn => Không tồn tại x,y thỏa mãn HPT
+ Nếu \(\left(x+y\right)^2+2\left(x+y\right)-15=0\)
\(\Leftrightarrow\left[\left(x+y\right)^2+2\left(x+y\right)+1\right]-16=0\)
\(\Leftrightarrow\left(x+y+1\right)^2-\left(4\right)^2=0\)
\(\Leftrightarrow\left(x+y+5\right)\left(x+y-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y+5=0\\x+y-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-\left(y+5\right)\\x=3-y\end{cases}}}\)
Đến đây ta lại xét 2 TH sau:
+ TH1: \(x=-\left(y+5\right)\), thay vào phần trên của HPT \(\left(1\right)\)ta được:
\(\left(y+5\right)^2+y^2-\left(y+5\right)y+1=4y\)
\(\Leftrightarrow y^2+10y+25+y^2-y^2-5y+1-4y=0\)
\(\Leftrightarrow y^2+y+26=0\)
\(\Leftrightarrow\left(y+\frac{1}{2}\right)^2+\frac{103}{4}=0\)
Mà \(\left(y+\frac{1}{2}\right)^2+\frac{103}{4}\ge\frac{103}{4}>0\left(\forall y\right)\)
=> Mâu thuẫn
=> Không tồn tại x,y thỏa mãn HPT
+ TH2: \(x=3-y\), thay vào phần trên của HPT \(\left(1\right)\), ta được:
\(\left(3-y\right)^2+y^2+\left(3-y\right)y+1=4y\)
\(\Leftrightarrow9-6y+y^2+y^2+3y-y^2+1-4y=0\)
\(\Leftrightarrow y^2-7y+10=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2\\y=5\end{cases}\Leftrightarrow}\orbr{\begin{cases}\hept{\begin{cases}x=1\\y=2\end{cases}}\\\hept{\begin{cases}x=-2\\y=5\end{cases}}\end{cases}}}\)
Vậy \(\hept{\begin{cases}x=1\\y=2\end{cases}}\)hoặc \(\hept{\begin{cases}x=-2\\y=5\end{cases}}\)
Em mới hc lp 8 nên ko bt làm có đúng ko ạ!!
Ở đoạn gần cuối em viết phương trình bị lỗi ko hiện nên em làm tiếp chỗ đó ạ:
\(...\)
\(\left(y-2\right)\left(y-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y-2=0\\y-5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=2\\y=5\end{cases}}}\)
+ Nếu \(y=2\)thì thay vào PT \(y=3-x\)\(\Rightarrow x=1\)
+ Nếu \(y=5\)thì thay vào PT \(y=3-x\)\(\Rightarrow x=-2\)
\(...\)
ĐK: \(x\ge\frac{1}{5}\)
\(PT\Leftrightarrow\left[x+1-\sqrt{5x-1}\right]+\left[x+1-\sqrt[3]{9-x}\right]+2x^2+x-3=0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)}{x+1+\sqrt{5x-1}}+\frac{\left(x-1\right)\left(x^2+4x+8\right)}{\left(x+1\right)^2+\left(x+1\right)\sqrt[3]{9-x}+\sqrt[3]{\left(9-x\right)^2}}+\left(2x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[\frac{x-2}{x+1+\sqrt{5x-1}}+....\right]=0\)
=> x=1
Ta chứng minh vế trong ngoặc >0
Từ ĐK ta có \(2x+3+\frac{x-2}{x+1+\sqrt{5x-1}}>\frac{17}{5}+\left(\frac{1}{5}-2\right)=\frac{8}{5}>0\)
\(ĐK:x\ge\frac{1}{5}\)
\(\sqrt{5x-1}+\sqrt[3]{9-x}=2x^2+3x-1\)
\(\Leftrightarrow\left(\sqrt{5x-1}-2\right)+\left(\sqrt[3]{9-x}-2\right)=2x^2+3x-5\)
\(\Leftrightarrow\frac{5\left(x-1\right)}{\sqrt{5x-1}+2}-\frac{x-1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}=\left(x-1\right)\left(2x+5\right)\)
\(\Leftrightarrow\left(x-1\right)\left(2x+5+\frac{1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}-\frac{5}{\sqrt{5x-1}+2}\right)=0\)
Với điều kiện \(x\ge\frac{1}{5}\)thì \(2x+5-\frac{5}{\sqrt{5x-1}+2}\ge2.\frac{1}{5}+5-\frac{5}{0+2}=\frac{29}{10}>0\)
Suy ra \(2x+5+\frac{1}{\sqrt[3]{\left(9-x\right)^2}+2\sqrt[3]{9-x}+4}-\frac{5}{\sqrt{5x-1}+2}>0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
Vậy phương trình có một nghiệm duy nhất là x = 1
Đề bài thiếu : không có 4 điểm nào cùng thuộc 1 đường tròn ( nhỡ n điểm này cùng thuộc 1 đường tròn)
Có n điểm mà ko có 3 điểm nào thẳng hàng luôn tồn tại 2 điểm sao cho n−2 điểm còn lại ∈ cùng một nửa mặt phẳng có bờ là đường thẳng chứa đoạn thẳng có 2 mút là 2 điểm trên
gọi 2 điểm đó là A1,A2 và n−2 điểm còn lại là B1,B2,B3,...,Bn−2
Xét các góc A1BiA2ˆ(i=1,2,3,..,n−2)
luôn tồn tại một góc có số đo lớn hơn hẳn những góc còn lại giả sử là A1BmA2ˆ
khi đó vẽ đường tròn ngoại tiếp TG này
Dễ cm nếu ∃1 điểm nằm trong đường tròn đó gs là Bn thì A1BnA2ˆ>A1BmA2ˆ
=> vô lý vì góc trên là lớn nhất
P/s : Bài náy có thể mở rộng là có thể vẽ 1 đường tròn chứa đúng m điểm với (m≤n)
Trong các khoảng cách từ O đến các cạnh của đa giác, giả sử khoảng cách từ O đến cạnh AB là nhỏ nhất (đó là đường vuông góc OE)
Ta sẽ chứng minh E phải thuộc cạnh AB
Giả sử E nằm ngoài cạnh AB, khi đó OE phải cắt một trong các cạnh của đa giác tại G
Dễ thấy OF<OG<OE nghĩa là điểm O gần cạnh BC hơn cạnh AB
Điều này trái với việc chọn cạnh AB, từ đó ta có điều phải chứng minh