giải hệ phương trình 4x-3y=6 và 3y+4x=10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Vì |4x - 2| = 6 <=> 4x - 2 ϵ {6,-6} <=> x ϵ {2,-1}
Thay x = 2, ta có B không tồn tại
Thay x = -1, ta có B = \(\dfrac{1}{3}\)
b)ĐKXĐ:x ≠ 2,-2
Ta có \(A=\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}=\dfrac{10-5x+3x+6}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{16-2x}{\left(x+2\right)\left(2-x\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{\left(x+2\right)\left(x-2\right)}-\dfrac{15-x}{4-x^2}=\dfrac{2x-16}{x^2-4}+\dfrac{15-x}{x^2-4}=\dfrac{x-1}{x^2-4}\)c)Từ câu b, ta có \(A=\dfrac{x-1}{x^2-4}\)\(\Rightarrow\dfrac{2A}{B}=\dfrac{\dfrac{\dfrac{2x-2}{x^2-4}}{2x+1}}{x^2-4}=\dfrac{2x-2}{2x+1}< 1\) với mọi x
Do đó không tồn tại x thỏa mãn đề bài
a, ta có A(x)=2x3+7x2+ax+b
=(2x3+2x2+2x)+(5x2+5x+5)+ax-7x+b-5
=2x(x2+x+1)+5(x2+x+1)+(a-7)x+(b-5)
=(x2+x+1)(2x+5)+(a-7)x+(b-5)
ta có: (x2+x+1)(2x+5)⋮B(x)
→để A(x)⋮B(x) thì (a-7)x+(b-5)=0
→\(\left\{{}\begin{matrix}a-7=0\\b-5=0\end{matrix}\right.\) ⇔\(\left\{{}\begin{matrix}a=7\\b=5\end{matrix}\right.\)
vậy ....
mk trình bày hơi tắt xíu
bn cố gắng dịch nhé
\(B=x+1+\dfrac{25}{x+2}=x+2+\dfrac{25}{x+2}-1\)
Áp dụng bđt cauchy, ta có \(x+2+\dfrac{25}{x+2}\ge2.\sqrt{\left(x+2\right).\dfrac{25}{x+2}}=2.5=10\)
Do đó B ≥ 10 - 1 = 9
Dấu = xảy ra <=> x = 3
Nếu không có điều kiện gì bổ sung thêm thì biểu thức này không có max bạn nhé.
Ta có: m > n
=> 9m > 9n (nhân hai vế với 9)
=> 9m +1 > 9n +1 (cộng hai vế với 1)
Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là a và b ( 0< a,b< 210; m)
Theo đề bài ta có hệ pt:
2a + 2b = 110
4a + 8b = 316
⇒ a = 31 (m)
b = 24 (m)
- Độ dài ban đầu:
+ Nửa chu vi HCN là: \(\dfrac{110}{2}=55\left(m\right)\)
+ Gọi chiều dài HCN là: \(a\left(m\right)\left(đk:0< a< 55\right)\)
+ Chiều rộng HCN là: \(55-a\left(m\right)\)
- Độ dài sau khi thay đổi:
+ Nửa chu vi HCN là: \(\dfrac{316}{2}=158\left(m\right)\)
+ Chiều dài HCN là: \(2a\left(m\right)\)
+ Chiều rộng HCN là: \(4\left(55-a\right)\left(m\right)\)
Theo bài ra, ta có phương trình:
\(2a+4\left(55-a\right)=158\\ \Leftrightarrow2a+220-4a=158\\ \Leftrightarrow2a-4a=158-220\\ \Leftrightarrow-2a=-62\\ \Leftrightarrow a=31\left(m\right)\left(TM\right)\)
Vậy chiều dài là 31m, chiều rộng là 55 - 31 = 22m