Cho đường tròn (o) và điểm K thuộc (O). Vẽ đường tròn tâm K cắt (O) tại C,D. Vẽ dây AB của (K) vương góc với bán kính KC, B nằm trong (O). CB cắt (O) tại điểm thứ hai là E.qua E vẽ đường thẳng song song với ac, cắt AB tại G. Chứng minh tam giác CDG vuông
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=4\Leftrightarrow\sqrt{ab}+\sqrt{a}+\sqrt{b}=3\)
\(\text{Ta có:}M\ge a+b\Rightarrow2M+2\ge a+b+a+1+b+1\ge2\left(\sqrt{ab}+\sqrt{a}+\sqrt{b}\right)\left(\text{theo cô si}\right)=6\)
\(\Rightarrow M\ge2\left(\text{dấu "=" xảy ra khi:}a=b=1\right)\)
\(5x^2-6x-2=0\)
\(\Delta'=\left(-6\right)^2-4\cdot5\cdot\left(-2\right)=76>0\)
=> Phương trình có 2 nghiệm
Theo Viet, ta có: \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=\frac{6}{5}\\x_1x_2=\frac{c}{a}=\frac{-2}{5}\end{cases}}\)
Vậy: ...
\(A=\frac{2}{5+\sqrt{7}}+\frac{\sqrt{28}}{2}-2\)
\(A=\frac{2.\left(5-\sqrt{7}\right)}{25-7}+\frac{2\sqrt{7}}{2}-2\)
\(A=\frac{2.\left(5-\sqrt{7}\right)}{18}+\sqrt{7}-2\)
\(A=\frac{5-\sqrt{7}}{9}+\sqrt{7}-2\)
\(A=\frac{5-\sqrt{7}+9\sqrt{7}-18}{9}\)
\(A=\frac{-13+8\sqrt{7}}{9}\)
Vậy \(A=\frac{-13+8\sqrt{7}}{9}\)
\(A=\frac{2}{5+\sqrt{7}}+\frac{\sqrt{28}}{2}-2\)
\(=\frac{2\left(5-\sqrt{7}\right)}{25-7}+\frac{2\sqrt{7}}{2}-2\)
\(=\frac{2\left(5-\sqrt{7}\right)}{18}+\sqrt{7}-2\)
\(=\frac{2\left(5-\sqrt{7}\right)}{2.9}+\sqrt{7}-2=\frac{5-\sqrt{7}}{9}+\sqrt{7}-2\)
Bạn ơi bạn có đáp án bài 2 chưa ạ ? Mình đang không biết giải bài 2