Cho parabol (P): ax2+bx+c. Tìm tất cả các giá trị m để phương trình x2-x-m\(\sqrt{2}\)=0 có duy nhất 1 nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có hàm số
\(y=2\left(x^2-2mx+m^2\right)-\left(2m^2+m-5\right)\ge-\left(2m^2+m-5\right)\)
vậy \(-\left(2m^2+m-5\right)=5\Leftrightarrow2m^2+m=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-\frac{1}{2}\end{cases}}\)
Vậy có hai giá trị của m
Mình trình bày cho dễ hiểu nha
\(sina-\sqrt{3}cosa\)
\(=2\cdot\left(\frac{1}{2}sina-\frac{\sqrt{3}}{2}cosa\right)\)
\(=2\cdot\left(sinacos\frac{pi}{6}-cosasin\frac{pi}{6}\right)\)
\(=2\cdot sin\left(a-\frac{pi}{6}\right)\)
Ta có\(-1\le sin\left(a-\frac{pi}{6}\right)\le1\)
\(-2\le sin\left(a-\frac{pi}{6}\right)\le2\)
Vậy Min=-2
Max=2
Ta có \(D=sin^2a-cosa-1=-cos^2a-cosa=-\left(cos^2a+cosa+\frac{1}{4}\right)+\frac{1}{4}\le\frac{1}{4}\)
mình đang học onl nên là rep muộn chút
Đặt \(sina=x;cosa=y\)ta có : \(x^2+y^2=1\)
Khi đó : \(-E=x^2+y^2-x-y-1=\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2-\frac{3}{2}\ge-\frac{3}{2}\)
\(< =>E\le\frac{3}{2}\)
sai thì thôi nhé
ai đó giúp mình với mình còn 3 tiếng nữa là tới hạn nộp bài rồi :(((