Chứng minh bất đẳng thức: \(a^2+b^2+c^2\ge2\left(ab+bc-ac\right)\).
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
KM
0
PH
Với mọi số a,b,c > 0. Chứng minh :\(\frac{a^5}{b^2}+\frac{b^5}{c^2}+\frac{c^5}{a^2}\ge a^3+b^3+c^3\)
0
Ta có
\(a^2+b^2+c^2\ge2\left(ab+bc-ac\right)\Leftrightarrow\text{ }a^2+b^2+c^2+2ac-2ab-2bc\ge0\)
\(\Leftrightarrow\left(a+c\right)^2+b^2-2b\left(a+c\right)\ge0\)
\(\Leftrightarrow\left(a+c-b\right)^2\ge0\) luôn đúng
đấu bằng xảy ra khi "a+c-b=0