Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{x+2}{x-4}\le0\\x-2< 0\end{cases}}\), điều kiện \(x\ne4\)
\(\Leftrightarrow\hept{\begin{cases}-2\le x< 4\\x< 2\end{cases}}\Leftrightarrow-2\le x< 2\)
\(S=[-2;2)\)
\(A\left(x_a;y_a\right)\Rightarrow\overrightarrow{IA}=x_a\overrightarrow{i}+y_a\overrightarrow{j}\)
\(B\left(x_b;y_b\right)\Rightarrow\overrightarrow{IB}=x_b\overrightarrow{i}+y_b\overrightarrow{j}\)(Với \(\overrightarrow{i};\overrightarrow{j}\)là hai vector đơn vị của trục Ox,Oy)
\(\Rightarrow\overrightarrow{AB}=\overrightarrow{IB}-\overrightarrow{IA}=\left(x_b-x_a\right)\overrightarrow{i}+\left(y_b-y_a\right)\overrightarrow{j}\)
Vậy tọa độ của vector AB là \(\overrightarrow{AB}=\left(x_b-x_a;y_b-y_a\right).\)
Áp dụng BĐT Cosi, ta có:
\(\frac{a}{9}\)+\(\frac{1}{a}\)>= 2.\(\frac{1}{3}\)=\(\frac{2}{3}\)
=> a+\(\frac{1}{a}\)=\(\frac{a}{9}\)+\(\frac{8a}{9}\)+\(\frac{1}{a}\)>= \(\frac{2}{3}\)+\(\frac{8a}{9}\)>= \(\frac{2}{3}\)+\(\frac{8.3}{9}\)=\(\frac{10}{3}\)
Vậy GTNN của P là: \(\frac{10}{3}\), tại a=3