K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

Đặt f(x) = 4x- 8x+ 1 

f(x) là hàm đa thức nên liên tục trên R nên:

f(x) liên tục trên [-1; 2].

Ta có: f(-1) = -11 và f(2) = 1 ⇒ f(1).f(2)=11< nên tồn tại x_0 \in (-1;2) để f(x_0)=0.

\left\{ \begin{aligned} & f(-1)=-11\\ & f(2)=1 \end{aligned} \right. \Rightarrow f(-1).f(2) = -11 < 0 Vậy phương trình đã cho có ít nhất 1 nghiệm trong khoảng (-1 ; 2 ).    
 

24 tháng 2 2021

Hàm số f(x)=4x3-8x2+1 liên tục trên R

Ta có f(-1)=-11,f(2)=1 nên f(-1);f(2) <0

Do đó theo tính chất hàm số liên tục, phương trình đã có có ít nhất 1 nghiệm thuộc khoảng (-1;2)

24 tháng 2 2021

ko bt sory bạn:((

24 tháng 2 2021

bạn ơi bạn troll mình à

chứ mình ko bt đâu

24 tháng 2 2021

xét m=1 và m=-1 thì pt luôn có nghiệm
xét m#1 và m#-1
đặt f(x)=
(1−m2)x5−3x−1(1−m2)x5−3x−1
f(x)liên tục trên R nên f(x) lt trên [-1,0]
f(-1)=
m2+1m2+1>0
f(0)=-1
f(-1)*f(0)<0 suyra ( đpcm ) .

24 tháng 2 2021
Xét m=1 và m=-1 thì pt luôn có nghiệmxét m#1 và m#-1đặt f(x)=(1−m2)x5−3x−1(1−m2)x5−3x−1f(x)liên tục trên R nên f(x) lt trên [-1,0]f(-1)=m2+1m2+1>0f(0)=-1f(-1)*f(0)
8 tháng 5 2021

\(\dfrac{\sqrt{2}}{2}\)a

8 tháng 5 2021

d(h,(scd))=a\(\dfrac{\sqrt{2}}{2}\)

22 tháng 2 2021

Ta có \(\frac{d\left(A,\left(SCD\right)\right)}{d\left(M,\left(SCD\right)\right)}=2\Rightarrow d=\left(m,\left(SCD\right)\right)=\frac{1}{2}d\left(A,\left(SCD\right)\right)\)

Dễ thấy AC _|_ CD, SA _|_ CD dựng AH _|_ SA => AH _|_ (SCD)

Vậy d(A,(SCD))=AH

Xét tam giác vuông SAC (A=1v) có \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AS^2}\Rightarrow AH=\frac{a\sqrt{6}}{3}\)

Vậy suy ra \(d\left(M,\left(SCD\right)\right)=\frac{a\sqrt{6}}{3}\)

E=AB∩CD,G=EN∩SB⇒G là trọng tâm tam giác SAE.

d(M,(NCD))=GMGBd(B,(NCD))=12d(B,(NCD))=12.12d(A,(NCD))=14d(A,(NCD))=14h 

Tứ diện AEND vuông tại đỉnh A nên 1h2=1AN2+1AE2+1AD2=116a2⇒h=a6611 

Vậy d(M,(NCD))=a6644. 

22 tháng 2 2021

Dựng CH _|_ AB => CH _|_ (SAB)

Giả sử MN cắt AD tại F. Theo định lý Talet ta có:

\(\frac{DF}{MC}=\frac{ND}{NC}=\frac{1}{2}\Rightarrow DF=\frac{MC}{2}=\frac{a}{4}\)

Khi đó \(\frac{PA}{PC}=\frac{AF}{MC}=\frac{5}{2}\Rightarrow\frac{CA}{PA}=\frac{7}{5}\)

Do đó: d (P;(SAB))=\(\frac{5}{7}d\left(C;\left(SAB\right)\right)=\frac{5}{7}CH=\frac{5}{7}\cdot\frac{a\sqrt{3}}{2}=\frac{5a\sqrt{3}}{14}\)

8 tháng 5 2021

\(\dfrac{\sqrt{3}a5}{14}\)

22 tháng 2 2021

Gọi M, N lần lượt là trung điểm các cạnh  AB và CD.

Ta có tam giác ANB cân tại N,

-> MN vuông góc AB.

Tam giác ADB = Tam giác ACB, ta có:

MD=MC -> Tam giác MDC cân tại M.

-> MN vuông góc CD

Do đó ta suy ra MN là đoạn vuông góc chung của cạnh AB và CD.

Ta có khoảng cách từ cạnh AB đến CD là MN:

MN= căn bậc a (AN^2-AM^2)= √2/2

Đáp số: khoảng cách giữa cạnh AB và CD là 2/2

22 tháng 2 2021

Gọi M và N lần lượt là trung điểm của AB và CD. Khi đó:

\(\Delta ACD\)và \(\Delta BCD\)là 2 tam giác đều cạnh 3 nên AN=BN=\(\frac{3\sqrt{3}}{2}\)

Đồng thời \(\Delta ABC=\Delta ABD\)nên CM=DM

Do đó MAB và NCD là 2 tam giác cân tại M và N

Vậy MN _|_ BA và MN _|_ CD

Ta có MN=\(\sqrt{NB^2-MB^2}=\sqrt{\frac{27}{4}-\frac{25}{4}}=\frac{\sqrt{2}}{2}\)

23 tháng 2 2021
Đáp án là 3×2+1=7
23 tháng 2 2021
em gửi câu trả lời bằng ảnh ạ

Bài tập Tất cả

23 tháng 2 2021

Với mọi dãy (xn):xn>1

\(\forall\)n và \(limx_n=1\)ta có \(lim_{x\rightarrow1^+}\frac{4x-3}{x-1}=lim\frac{4x_n-3}{x_n-1}=+\infty\)