K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2023

23 tháng 2 2023

ĐKXĐ : \(\left\{{}\begin{matrix}x\ge-1\\y\ge0\end{matrix}\right.\)

Ta có : \(x+\sqrt{\left(x+1\right).y}=2y-1\)

\(\Leftrightarrow x+1+\sqrt{\left(x+1\right)y}-2y=0\)

\(\Leftrightarrow\left(\sqrt{x+1}-\sqrt{y}\right)\left(\sqrt{x+1}+2\sqrt{y}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+1}=\sqrt{y}\left(1\right)\\\sqrt{x+1}+2\sqrt{y}=0\left(2\right)\end{matrix}\right.\)

Từ (2) ta có \(\left\{{}\begin{matrix}x+1=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=0\end{matrix}\right.\) (tm)

Thử lại ta có (x;y) = (-1;0) là 1 nghiệm của hệ phương trình

Từ (1) ta có : x + 1 = y

Khi đó \(\sqrt{2x+3}+\sqrt{y}=x^2-y\)

\(\Leftrightarrow\sqrt{2x+3}+\sqrt{x+1}=x^2-x-1\)

\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=x^2-x-6\)

\(\Leftrightarrow\dfrac{2x-6}{\sqrt{2x+3}+3}+\dfrac{x-3}{\sqrt{x+1}+2}=\left(x-3\right)\left(x+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}=x+2\end{matrix}\right.\)

Với x = 3 => y = 4 (tm)

Với \(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}=x+2\)

Vì \(x\ge-1\) nên \(\dfrac{2}{\sqrt{2x+3}+3}\le\dfrac{1}{2};\dfrac{1}{\sqrt{x+1}+2}\le\dfrac{1}{2}\)

nên \(VT\le\dfrac{1}{2}+\dfrac{1}{2}=1\) 

lại có  \(VP\ge1\) khi x \(\ge-1\)

Dấu "=" xảy ra khi x = -1 => y = 0 (tm)

Vậy (x;y) = (-1;0) ; (3;4) 

23 tháng 2 2023

đk: \(\left\{{}\begin{matrix}x\ge-1\\y\ge0\\x^2>y\end{matrix}\right.\)

pt đầu \(\Leftrightarrow\sqrt{\left(x+1\right)y}=2y-x-1\) 

\(\Rightarrow\left(x+1\right)y=4y^2+x^2+1+2x-4xy-4y\)

\(\Leftrightarrow x^2+4y^2-5xy+2x-5y+1=0\)

\(\Leftrightarrow\left(x-y\right)\left(x-4y\right)+\left(x-y\right)+\left(x-4y\right)+1=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(x-4y+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=x+1\\x=4y-1\end{matrix}\right.\)

TH1: \(y=x+1\) thay vào pt thứ hai, ta được 

\(\sqrt{2x+3}+\sqrt{x+1}=x^2-x-1\) 

\(\Leftrightarrow\left(\sqrt{2x+3}-3\right)+\left(\sqrt{x+1}-2\right)=x^2-x-6\)

\(\Leftrightarrow\dfrac{2x-6}{\sqrt{2x+3}+3}+\dfrac{x-3}{\sqrt{x+1}+2}-\left(x-3\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(nhận\right)\\\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2=0\end{matrix}\right.\)

TH1.1: \(x=3\Rightarrow y=x+1=4\) (nhận)

TH1.2:\(\dfrac{2}{\sqrt{2x+3}+3}+\dfrac{1}{\sqrt{x+1}+2}-x+2=0\) (chỗ này mai mình nghĩ tiếp)

TH2: \(x=4y-1\). Thay vào pt thứ hai, ta được 

\(\sqrt{8y+1}+\sqrt{y}=16y^2-9y+1\) 

\(\Leftrightarrow\left(\sqrt{8y+1}-1\right)+\sqrt{y}=16y^2-9y\)

\(\Leftrightarrow\dfrac{8y}{\sqrt{8y+1}+1}+\dfrac{y}{\sqrt{y}}-16y^2+9y=0\)

\(\Leftrightarrow y\left(\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9=0\end{matrix}\right.\)

TH2.1: \(y=0\) \(\Rightarrow x=4y-1=-1\) (nhận)

TH2.2: \(\dfrac{8}{\sqrt{8y+1}+1}+\dfrac{1}{\sqrt{y}}-16y+9=0\)

(đoạn này để mai mình nghĩ tiếp nhé, ta tìm được các nghiệm \(\left(x;y\right)=\left(-1;0\right);\left(3;4\right)\))

 

 

 

 

 

 

23 tháng 2 2023

đt△  x + 4y - 2 = 0 => y = -\(\dfrac{1}{4}\)x + \(\dfrac{1}{2}\)

Đt d có dạng y = ax + b vì (d) //Δ nên a =  -\(\dfrac{1}{4}\); b # \(\dfrac{1}{2}\)

đt (d) có dạng y = \(-\dfrac{1}{4}\) x + b ⇒x+ 4y - 4b = 0

Khoảng cách từ A(-2;3) đến đường thẳng (d) là :

d(A;d) = \(\dfrac{|-2+4.3-4b|}{\sqrt{1^2+4^2}}\) = 3 

              | 10 - 4b| = 3\(\sqrt{17}\)

              10-  4b = 3\(\sqrt{17}\)

               b =  \(\dfrac{10-3\sqrt{17}}{4}\)

               4b - 10 = 3\(\sqrt{17}\)

                b = \(\dfrac{10+3\sqrt{17}}{4}\)

pt đt d thỏa mãn đề bài là:

     y = - \(\dfrac{1}{4}\) x + \(\dfrac{10-3\sqrt{17}}{4}\)    hoặc  y = \(-\dfrac{1}{4}\) x + \(\dfrac{10+3\sqrt{17}}{4}\)

 

 

12 tháng 4 2023

loading...  

23 tháng 2 2023

a) A(3;-5) ; B(1;0)

=> \(\overrightarrow{AB}\left(-2;5\right)\)

Gọi C(x;y) tọa độ cần tìm

khi đó \(\overrightarrow{OC}\left(x;y\right)\)

 \(\overrightarrow{OC}=-3\overrightarrow{AB}\Leftrightarrow\left\{{}\begin{matrix}x=-3.\left(-2\right)=6\\y=-3.5=-15\end{matrix}\right.\)

Vậy C(6;-15)

b) D đối xứng với A qua C

=> C trung điểm AD

Gọi D(x1;y1)

Ta có : \(6=\dfrac{3+x_1}{2}\Leftrightarrow x_1=9\) 

\(-15=\dfrac{-5+y_1}{2}\) <=> y1 = -25 

Vậy D(9;-25) 

12 tháng 4 2023

loading...  

23 tháng 2 2023

ĐKXĐ : \(\left\{{}\begin{matrix}2x^2+5\ge0\\x^2-x+11\ge0\end{matrix}\right.\Leftrightarrow\forall x\inℝ\)

\(\sqrt{2x^2+5}=\sqrt{x^2-x+11}\)

<=> 2x2 + 5 = x2 - x + 11 

<=> x2 + x - 6 = 0

<=> (x - 2)(x + 3) = 0

<=> \(\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Tập nghiệm phương trình S = {2;-3}

12 tháng 4 2023

loading...  

23 tháng 2 2023

Theo đề bài, giá bán \(x\) sản phẩm là \(170x\) (nghìn đồng)

Để nhà sản xuất không bị lỗ thì \(P\left(x\right)\le170x\) \(\Leftrightarrow x^2+30x+3300\le170x\) \(\Leftrightarrow x^2-140x+3300\le0\) \(\Leftrightarrow\left(x-110\right)\left(x-30\right)\le0\)

Đặt \(f\left(x\right)=\left(x-110\right)\left(x-30\right)\). Ta lập bảng xét dấu:

\(x\) \(-\infty\)               \(30\)                  \(110\)                                \(+\infty\)
\(f\left(x\right)\)             \(+\)        \(0\)         \(-\)        \(0\)                 \(+\)

 Vậy \(f\left(x\right)\le0\Leftrightarrow x\in\left[30;110\right]\). Do đó, để nhà sản xuất không bị lỗ thì số sản phẩm được sản xuất trong đoạn \(\left[30;110\right]\).

 

 

 

 

 

17 tháng 3 2023

Khi bán hết  sản phẩm thì số tiền thu được là: 170� (nghìn đồng).

Điều kiện để nhà sản xuất không bị lỗ là 170�≥�2+30�+3300⇔�2−140�+3300≤0.

Xét �2−140�+3300=0⇒�=30 hoặc �=110.

Bảng xét dấu �(�)=�2−140�+3300:

!aaaaa + + xf(x)00 + 30110

Ta có: �2−140�+3300≤0⇔�∈[30;110].

Vậy nếu nhà sản xuất làm ra từ 30 đến 110 sản phẩm thì họ sẽ không bị lỗ.

23 tháng 2 2023

a) Tọa độ vector pháp tuyến của đường BC là \(\overrightarrow{n_{BC}}=\left(1;-1\right)\) 

\(\Rightarrow\) Tọa độ vector pháp tuyến của đường AH là \(\overrightarrow{n_{AH}}=\left(1;1\right)\) 

\(\Rightarrow AH:x+y+m=0\) với \(m\inℝ\)

Mà AH đi qua A nên tọa độ điểm A thỏa mãn pt đường thẳng AH \(\Rightarrow-1-2+m=0\) \(\Leftrightarrow m=3\)

Vậy \(AH:x+y+3=0\)

b) Gọi d là đường thẳng chứa đường trung bình ứng với cạnh BC của tam giác ABC. Khi đó \(d//BC\) nên \(\overrightarrow{n_{BC}}=\overrightarrow{n_d}=\left(1;-1\right)\) (với \(\overrightarrow{n_d}\) là vector pháp tuyến của đường thẳng d) \(\Rightarrow d:x-y+n=0\) \(\left(n\inℝ\right)\)

Mặt khác, tọa độ H là nghiệm của hệ \(\left\{{}\begin{matrix}x-y+4=0\\x+y+3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{7}{2}\\y=\dfrac{1}{2}\end{matrix}\right.\)  \(\Rightarrow H\left(-\dfrac{7}{2};\dfrac{1}{2}\right)\)

Gọi \(I\left(x_I;y_I\right)\) là trung điểm AH \(\Rightarrow\) \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_H}{2}=\dfrac{-1-\dfrac{7}{2}}{2}=-\dfrac{9}{4}\\y_I=\dfrac{y_A+y_H}{2}=\dfrac{-2+\dfrac{1}{2}}{2}=-\dfrac{3}{4}\end{matrix}\right.\) 

Do d là đường trung bình ứng với cạnh BC của tam giác ABC nên d đi qua trung điểm I của đường cao AH \(\Rightarrow-\dfrac{9}{4}-\left(-\dfrac{3}{4}\right)+n=0\) \(\Leftrightarrow n=\dfrac{3}{2}\) \(\Rightarrow d:x-y+\dfrac{3}{2}=0\)

 

26 tháng 3 2023

+ Bước 1: Chọn 2 học sinh khối C, 13 học sinh khối B hoặc khối A có C52C2513 cách.

+ Bước 2: Chọn 2 học sinh khối C, 13 học sinh khối B và khối A không thỏa mãn yêu cầu.

- Trường hợp 1: Chọn 2 học sinh khối C, 10 học sinh khối B và 3 học sinh khối A có C52C1010C153 cách.

   

- Trường hợp 2: Chọn 2 học sinh khối C, 9 học sinh khối B và 4 học sinh khối A có C52C109C154 cách.

Vậy có C52C2513−C1010C153−C109C154=51861950 cách.

22 tháng 2 2023

Cả hai ngày đội công nhân làm được là:

2/7+2/3=20/21 (quãng đường)

Vậy...

22 tháng 2 2023

Cả hai ngày đội công nhân làm được số phần của quãng đường là :

2/7 + 2/3 = 20/21 ( quãng đường )

đáp số : ....