K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2023

A                    =  \(xy^2z^3\) + \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) 

\(\times\) \(xyz\)         =              \(x^2y^3z^4\)+...+\(x^{2014}y^{2015}z^{2016}\) + \(x^{2015}y^{2016}z^{2017}\)

\(\times\) \(xyz\) - A    =     \(x^{2015}\)\(y^{2016}\)\(z^{2017}\) - \(xy^2z^3\) 

A\(\times\)\(xyz\) - 1)  =    \(x^{2015}\)\(y^{2016}z^{2017}\) - \(xy^2z^3\)

A                   =  (\(x^{2015}\) \(y^{2016}\) \(z^{2017}\)   - \(xy^2z^3\)) : (\(xyz\) - 1)

Thay \(x\) = -1; \(y\) = -1; \(z\) = -1

A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}

A = [ 1 - 1] : [-1-1]

A = 0: (-2)

A = 0

 

29 tháng 5 2023

A                    =  ��2�3 + �2�3�4+...+�2014�2015�2016 

× ���         =              �2�3�4+...+�2014�2015�2016 + �2015�2016�2017

× ��� - A    =     �2015�2016�2017 - ��2�3 

A×��� - 1)  =    �2015�2016�2017 - ��2�3

A                   =  (�2015 �2016 �2017   - ��2�3) : (��� - 1)

Thay  = -1;  = -1;  = -1

A = [(-1)2015.(-1)2016.(-1)2017 - (-1).(-1)2.(-1)3] : {(-1.(-1).(-1) - 1)}

A = [ 1 - 1] : [-1-1]

A = 0: (-2)

A = 0

Nhớ tick nha 

28 tháng 5 2023

    A = 13 + 23 + 33 + 43 +...+ 1003

   Ta có:   B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2

   Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)

 Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2

Ta cần chứng minh B  đúng với n = k + 1. 

⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2 

Ta có:

B = 13 + 23 + 33 +....+ k3 + (k+1)3

B = (1+2+3+...+k)2 + (k + 1)3

B = {(k +1)k:2}2 + (k+1)3 = (k+1)2\(\dfrac{k^2}{4}\) + k + 1} =(k+1)2(k2+4k+4)2: 4

B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4

B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2

Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2

⇒B = (1+2+3+...+ k+1)2 (đpcm)

Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2 

Áp dụng công thức trên ta có:

A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2

C = 1 + 2 + 3 + 4 +...+100

Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1

Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100

Tổng dãy số trên là: C = (100 +1)\(\times\) 100  : 2 = 5050

A = 50502

 

 

 

 

28 tháng 5 2023

  A = 13 + 23 + 33 + 43 +...+ 1003

   Ta có:   B = 13 + 23 + 33 + 43 +...+ n3 = ( 1 + 2 + 3 +...+n)2

   Thật vậy Với n = 1 ta có: B = 13 = 12 (đúng)

 Giả sử B đúng với n = k tức là:13 + 23 + 33 +....+k3 = (1+2+3 +...+k)2

Ta cần chứng minh B  đúng với n = k + 1. 

⇔13 + 23 + 33 + ...+ k3 + (k+1)3 = (1+2+3+...+k+k+1)2 

Ta có:

B = 13 + 23 + 33 +....+ k3 + (k+1)3

B = (1+2+3+...+k)2 + (k + 1)3

B = {(k +1)k:2}2 + (k+1)3 = (k+1)2�24 + k + 1} =(k+1)2(k2+4k+4)2: 4

B = (k+1)2(k2+2k + 2k + 4): 4 = (k+1)2{(k(k+2) + 2(k+2)}: 4

B = (k+1)2(k+2)2:4 = {(k+1)(k+2): 2}2

Mặt khác 1 + 2 + 3 + 4 +....+ k + k + 1 = (k+2)(k+1): 2

⇒B = (1+2+3+...+ k+1)2 (đpcm)

Vậy 13 + 23 + 33 + ...+n3 = (1+2+3+...+n)2 

Áp dụng công thức trên ta có:

A = 13 + 23 + 33 +43 +...+1003 = (1+2+3+4...+100)2

C = 1 + 2 + 3 + 4 +...+100

Dãy số trên là dãy số cách đều với khoảng cách là 2 - 1 = 1

Số số hạng của dãy số trên là: (100 -1):1 + 1 = 100

Tổng dãy số trên là: C = (100 +1)× 100  : 2 = 5050

A = 50502

HT!

16 tháng 5 2023

A = \(xy^2z^3+x^2y^3z^4\) + \(x^{2014}y^{2015}z^{2016}\) 

Thay \(x=\) -1;  y = -1;  z = -1 vào A ta có:

A = (-1).(-1)2.(-1)3 + (-1)2.(-1)3.(-1)4 + (-1)2014.(-1)2015.(-1)2016

A = (-1).1(-1) + 1.(-1).1 + 1.(-1).1

A = 1 - 1 - 1

A = -1

 

 

16 tháng 5 2023

A = ��2�3+�2�3�4 + �2014�2015�2016 

Thay �= -1;  y = -1;  z = -1 vào A ta có:

A = (-1).(-1)2.(-1)3 + (-1)2.(-1)3.(-1)4 + (-1)2014.(-1)2015.(-1)2016

A = (-1).1(-1) + 1.(-1).1 + 1.(-1).1

A = 1 - 1 - 1

A = -1 

tick cho mik nha

16 tháng 5 2023

16 tháng 5 2023

a) Xét tam giác ABH và tam giác ACH

Có: Góc B = góc C (t/c tam giác cân)

Cạnh AH chung

AB = AC (t/c tam giác cân)

=> tam giác AHB = tam giác AHC

b) 

15 tháng 5 2023

tử số 28,8,mẫu số 48 đúng nhớ like bạn nhé

19 tháng 5 2023

Gọi tử số và mẫu số lần lượt là a và b

Ta có:b-a=48

a/b=6/10 ⇒ a/6=b/10

Áp dụng tính chất dãy tỉ số bằng nhau

⇒a/6=b/10=(b-a)/(10-6)=48/4=12

Nên:

a=12.6=72

b=12.10=120

 

AH
Akai Haruma
Giáo viên
9 tháng 5 2023

Lời giải:
$-4.2(-4+2)+(-4-2)^2=-8(-2)+(-6)^2=16+36=52$

9 tháng 5 2023

trả lời hộ tui phần c thôi nhé

 

9 tháng 5 2023

em lớp 5

9 tháng 5 2023

Gọi số máy cày của đội thứ nhất, đội thứ hai, đội thứ ba lần lượt là:

\(x\); y; z  \(x;y;z\in N\) 

Theo bài ra ta có: 6\(x\) = 8y = 12z

                          ⇒3\(x\) = 4y = 6z

                         ⇒ \(\dfrac{x}{4}\)  = \(\dfrac{y}{3}\);    \(\dfrac{y}{6}\)  = \(\dfrac{z}{4}\)

         Áp dụng tính chất dãy tỉ số bằng nhau ta có:

                        \(\dfrac{x}{4}\) = \(\dfrac{y}{3}\) = \(\dfrac{x-y}{4-3}\) = \(\dfrac{2}{1}\) = 2

      ⇒ \(x\) = 2\(\times\) 4 = 8;    y =  2 \(\times\) 3 = 6;    z = \(\dfrac{y}{6}\) \(\times\) 4 =   \(\dfrac{6}{6}\) \(\times\) 4 = 4

Kết luận: Đội thứ nhất có 8 máy cày

              Đội thứ hai có 6 máy cày; đội thứ 3 có 4 máy cày

 

9 tháng 5 2023

Thêm bao nhiêu bóng vàng vào túi thì số bóng còn lại trong túi vẫn không đổi.

        18 quả bóng ứng với phân số: \(\dfrac{2}{1}\) - \(\dfrac{5}{7}\) = \(\dfrac{9}{7}\) (Số bóng còn lại)

Số bóng còn lại là: 18: \(\dfrac{9}{7}\) = 14 ( quả)

Số bóng vàng lúc cuối cùng là: 14 \(\times\) 2 = 28 ( quả)

Cuối cùng có tất cả số bóng trong rổ là: 28 + 14 = 42( quả)

Kết luận: cuối cùng có 42 quả trong rổ

7 tháng 5 2023

mình cần gấpp xĩu mn cứu mình vớii 

NV
7 tháng 5 2023

Do \(\Delta ABC\) cân tại A \(\Rightarrow\widehat{BCA}=\widehat{CBA}\) hay \(\widehat{BCH}=\widehat{CBA}\)

Xét hai tam giác vuông BHC và CKB có:

\(\left\{{}\begin{matrix}BC\text{ chung}\\\widehat{BCH}=\widehat{CBK}\end{matrix}\right.\) \(\Rightarrow\Delta_VBHC=\Delta_VCKB\left(ch-gn\right)\)

\(\Rightarrow CH=BK\) (1)

Mà \(\Delta ABC\) cân tại A \(\Rightarrow AB=AC\)

\(\Rightarrow AK+BK=AH+CH\) (2)

(1);(2) \(\Rightarrow AK=AH\)

\(\Rightarrow\Delta AHK\) cân tại A