K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2022

a, Xét tam giác ABC vuông tại A, đường cao AH 

ADHT \(AH^2=BH.CH=12\Rightarrow AH=2\sqrt{3}cm\)

-> BC = HB + HC = 8 cm 

ADHT \(AB^2=BH.BC=16\Rightarrow AB=4cm\)

b, sinB = \(\dfrac{AH}{AB}=\dfrac{2\sqrt{3}}{4}=\dfrac{\sqrt{3}}{2}\)

tanC = cotB = \(\dfrac{BH}{AH}=\dfrac{2}{2\sqrt{3}}=\dfrac{\sqrt{3}}{3}\)

19 tháng 8 2022

b, \(=\dfrac{4\left(3-\sqrt{5}\right)}{4}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}=3-\sqrt{5}+\sqrt{5}=3\)

19 tháng 8 2022

Bài 2 

đk x >= 1

\(2\sqrt{x-1}+3\sqrt{x-1}-\sqrt{x-1}=8\Leftrightarrow4\sqrt{x-1}=8\Leftrightarrow x=5\)(tm) 

undefined

0
18 tháng 8 2022

a, \(A=\left(\dfrac{\sqrt{7}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}\right)+\left(\dfrac{\sqrt{3}\left(\sqrt{6}-1\right)}{\sqrt{6}-1}\right):\dfrac{2\left(\sqrt{7}+\sqrt{3}\right)}{4}=\sqrt{7}+\sqrt{3}:\dfrac{\sqrt{7}+\sqrt{3}}{4}=\sqrt{7}+\dfrac{4\sqrt{3}\left(\sqrt{7}-\sqrt{3}\right)}{4}=\sqrt{7}+\sqrt{21}-3\)

b, \(B=3+4\sqrt{5}+\sqrt{\left(3-\sqrt{5}\right)^2}=3+4\sqrt{5}+3-\sqrt{5}=6+3\sqrt{5}\)

c, \(D=6\sqrt{3}-3\sqrt{3}-\left(\sqrt{3}-1\right)=3\sqrt{3}-\sqrt{3}+1=2\sqrt{3}+1\)

18 tháng 8 2022

.

18 tháng 8 2022

a) đkxđ \(x\ge3\)

Đặt \(\sqrt{x+5}=a\left(a\ge2\sqrt{2}\right)\) và \(\sqrt{x-3}=b\left(b\ge0\right)\). Khi đó pt đã cho \(\Leftrightarrow a-b=2\) (*)

Mặt khác \(a^2-b^2=\left(\sqrt{x+5}\right)^2-\left(\sqrt{x-3}\right)^2\) \(=x+5-\left(x-3\right)=8\), do đó ta có \(a^2-b^2=8\) \(\Leftrightarrow\left(a-b\right)\left(a+b\right)=8\), kết hợp với (*), ta có \(2\left(a+b\right)=8\Leftrightarrow a+b=4\)

Như vậy ta có hpt \(\left\{{}\begin{matrix}a-b=2\\a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\b=1\end{matrix}\right.\left(nhận\right)\)  \(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x+5}=3\\\sqrt{x-3}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=9\\x-3=1\end{matrix}\right.\Leftrightarrow x=4\left(nhận\right)\)

Vậy pt đã cho có nghiệm \(x=4\)

b) điều kiện \(x\ge0\)

Đặt \(\sqrt{3x+4}=a\left(a\ge2\right)\)\(\sqrt{x+4}=b\left(b\ge2\right)\) và \(c=\sqrt{x}\left(c\ge0\right)\). Khi đó pt đã cho \(\Leftrightarrow a+b=2c\)

Mặt khác \(b^2-c^2=\left(\sqrt{x+4}\right)^2-\left(\sqrt{x}\right)^2=\left(x+4\right)-x=4\) hay \(b^2-c^2=4\)

và \(3b^2-a^2=3\left(\sqrt{x+4}\right)^2-\left(\sqrt{3x+4}\right)^2\) \(=3\left(x+4\right)-\left(3x+4\right)=8\) hay \(3b^2-a^2=8\)

Vậy ta có hpt \(\left\{{}\begin{matrix}a+b=2c\\3b^2-a^2=8\\b^2-c^2=4\end{matrix}\right.\) (đến đây từ pt 1 ta có \(c=\dfrac{a+b}{2}\), thế vào pt thứ 3 để tìm ra pt thứ 2 theo 2 ẩn a,b, sau đó kết hợp vs pt thứ 2 để giải tìm a, b và đối chiếu điều kiện, từ đó suy ra x. 

c) và d) cách làm cũng tương tự a) và b). Đặt ẩn phụ rồi tìm liên hệ giữa các ẩn phụ đó.

loading...

1
18 tháng 8 2022

A B C K I

Áp dụng định lý hàm cos

\(BC^2=AB^2+AC^2-2.AB.AC.\cos\widehat{A}\) tính được BC

Áp dụng t/c đường phân giác

\(\dfrac{IB}{AB}=\dfrac{IC}{AC}\Rightarrow\dfrac{IB}{IC}=\dfrac{AB}{AC}=\dfrac{6}{12}=\dfrac{1}{2}\) sẽ tính được IB và IC

Áp dụng định lý hàm cos cho tg ABI có

\(IB^2=AB^2+AI^2-2.AB.AI.\cos\widehat{BAI}\) sẽ tính được AI

Bạn tự tính toán nhé!