Một xe gắn máy đi từ A đến B dài 35 km lúc tạo về nó đi bằng đường khác dài 42 km với vận tốc kém hơn lượt đi là 6 km trên 1 giờ tìm vận tốc lượt đi và lượt về biết thời gian về bằng 3/2 thời gian đi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(\frac{1}{x}+\frac{1}{y}\right).\sqrt{1+x^2y^2}\)
\(\rightarrow P>2.\sqrt{\frac{1}{x}.\frac{1}{y}}.\sqrt{1+\left(xy\right)^2}\)
\(\rightarrow P>2.\sqrt{\frac{1}{xy}}.\sqrt{1+\left(xy\right)^2}\)
\(\rightarrow P>2\sqrt{\frac{1}{xy}+xy}\)
Đặt \(xy=t\)
\(\rightarrow P>2\sqrt{\frac{1}{t}+t}\)
Ta có :
\(1>x+y>2\sqrt{xy}\)
\(\rightarrow\sqrt{xy}< \frac{1}{2}\)
\(\rightarrow xy< \frac{1}{4}\)
\(\rightarrow t< \frac{1}{4}\)
Lại có :
\(\frac{1}{t}+t=\frac{15}{16t}+\left(\frac{1}{16}+t\right)\)
\(\rightarrow\frac{1}{t}+t>\frac{15}{16.\frac{1}{4}}+2\sqrt{\frac{1}{16}.t}\)
\(\rightarrow\frac{1}{t}+t>\frac{17}{4}\)
\(\rightarrow B>2.\sqrt{\frac{17}{4}}\)
\(\rightarrow B>\sqrt{17}\)
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)